Coyote/examples_hw/apps/kmeans/hdl/quick_fifo.sv

150 lines
5.4 KiB
Systemverilog

/*
* Copyright 2019 - 2020 Systems Group, ETH Zurich
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
module quick_fifo #(
parameter FIFO_WIDTH = 32,
parameter FIFO_DEPTH_BITS = 8,
parameter FIFO_ALMOSTFULL_THRESHOLD = 2**FIFO_DEPTH_BITS - 4
) (
input wire clk,
input wire reset_n,
input wire we, // input write enable
input wire [FIFO_WIDTH - 1:0] din, // input write data with configurable width
input wire re, // input read enable
output reg valid, // dout valid
output reg [FIFO_WIDTH - 1:0] dout, // output read data with configurable width
output reg [FIFO_DEPTH_BITS - 1:0] count, // output FIFOcount
output reg empty, // output FIFO empty
output reg full, // output FIFO full
output reg almostfull // output configurable programmable full/ almost full
);
reg [FIFO_DEPTH_BITS - 1:0] rp = 0;
reg [FIFO_DEPTH_BITS - 1:0] wp = 0;
reg [FIFO_DEPTH_BITS - 1:0] mem_count = 0; // output FIFOcount
reg mem_empty = 1'b1;
reg valid_t1 = 0, valid_t2 = 0;
reg valid0 = 0;
wire remem;
wire wemem;
wire remem_valid;
wire [FIFO_WIDTH-1:0] dout_mem;
assign remem = (re & valid_t1 & valid_t2) | ~(valid_t1 & valid_t2);
assign wemem = we & ~full;
assign remem_valid = remem & ~mem_empty;
bram #(.DATA_WIDTH(FIFO_WIDTH),
.ADDR_WIDTH(FIFO_DEPTH_BITS)) fifo_mem(
.clk (clk),
.we (wemem),
.re (remem),
.raddr (rp),
.waddr (wp),
.din (din),
.dout (dout_mem)
);
// data
always @(posedge clk) begin
dout <= (valid_t2)? ((re)? dout_mem : dout) : dout_mem;
end
// valids, flags
always @(posedge clk) begin
if (~reset_n) begin
empty <= 1'b1;
full <= 1'b0;
almostfull <= 1'b0;
count <= 0; //32'b0;
rp <= 0;
wp <= 0;
valid_t2 <= 1'b0;
valid_t1 <= 1'b0;
mem_empty <= 1'b1;
mem_count <= 'b0;
//dout <= 0;
valid <= 0;
valid0 <= 0;
end
else begin
valid <= (valid)? ((re)? valid0 : 1'b1) : valid0;
valid0 <= (remem)? ~mem_empty : valid0;
valid_t2 <= (valid_t2)? ((re)? valid_t1 : 1'b1) : valid_t1;
valid_t1 <= (remem)? ~mem_empty : valid_t1;
rp <= (remem & ~mem_empty)? (rp + 1'b1) : rp;
wp <= (wemem)? (wp + 1'b1) : wp;
// mem_empty
if (we) mem_empty <= 1'b0;
else if(remem & (mem_count == 1'b1)) mem_empty <= 1'b1;
// mem_count
if( wemem & ~remem_valid) mem_count <= mem_count + 1'b1;
else if (~wemem & remem_valid) mem_count <= mem_count - 1'b1;
// empty
if (we) empty <= 1'b0;
else if((re & valid_t2 & ~valid_t1) & (count == 1'b1)) empty <= 1'b1;
// count
if( wemem & (~(re & valid_t2) | ~re) ) count <= count + 1'b1;
else if (~wemem & (re & valid_t2)) count <= count - 1'b1;
//
if (we & ~re) begin
if (count == (2**FIFO_DEPTH_BITS-1))
full <= 1'b1;
if (count == (FIFO_ALMOSTFULL_THRESHOLD-1))
almostfull <= 1'b1;
end
//
if ((~we | full) & re) begin //
full <= 1'b0;
if (count == FIFO_ALMOSTFULL_THRESHOLD)
almostfull <= 1'b0;
end
end
end
endmodule