forked from p32761584/tensorlayer3
76 lines
2.5 KiB
Python
76 lines
2.5 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
import os
|
|
import unittest
|
|
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
|
|
|
import tensorflow as tf
|
|
import tensorlayer as tl
|
|
|
|
from tests.utils import CustomTestCase
|
|
|
|
|
|
class Layer_Pooling_Test(CustomTestCase):
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.x = tf.placeholder(tf.float32, shape=[None, 784], name='x')
|
|
cls.y_ = tf.placeholder(tf.int64, shape=[None], name='y_')
|
|
|
|
# define the network
|
|
cls.network = tl.layers.InputLayer(cls.x, name='input')
|
|
cls.network = tl.layers.DropoutLayer(cls.network, keep=0.8, name='drop1')
|
|
cls.network = tl.layers.DenseLayer(cls.network, 800, tf.nn.relu, name='relu1')
|
|
cls.network = tl.layers.DropoutLayer(cls.network, keep=0.5, name='drop2')
|
|
cls.network = tl.layers.DenseLayer(cls.network, 800, tf.nn.relu, name='relu2')
|
|
cls.network = tl.layers.DropoutLayer(cls.network, keep=0.5, name='drop3')
|
|
|
|
cls.network = tl.layers.DenseLayer(cls.network, n_units=10, name='output')
|
|
|
|
# define cost function and metric.
|
|
cls.y = cls.network.outputs
|
|
cls.cost = tl.cost.cross_entropy(cls.y, cls.y_, name='cost')
|
|
|
|
correct_prediction = tf.equal(tf.argmax(cls.y, 1), cls.y_)
|
|
|
|
cls.acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
|
|
|
|
# define the optimizer
|
|
train_params = cls.network.all_params
|
|
optimizer = tl.optimizers.AMSGrad(learning_rate=1e-4, beta1=0.9, beta2=0.999, epsilon=1e-8)
|
|
cls.train_op = optimizer.minimize(cls.cost, var_list=train_params)
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
tf.reset_default_graph()
|
|
|
|
def test_training(self):
|
|
|
|
with self.assertNotRaises(Exception):
|
|
|
|
X_train, y_train, X_val, y_val, _, _ = tl.files.load_mnist_dataset(shape=(-1, 784))
|
|
|
|
with tf.Session() as sess:
|
|
# initialize all variables in the session
|
|
tl.layers.initialize_global_variables(sess)
|
|
|
|
# print network information
|
|
self.network.print_params()
|
|
self.network.print_layers()
|
|
|
|
# train the network
|
|
tl.utils.fit(
|
|
sess, self.network, self.train_op, self.cost, X_train, y_train, self.x, self.y_, acc=self.acc,
|
|
batch_size=500, n_epoch=1, print_freq=1, X_val=X_val, y_val=y_val, eval_train=False
|
|
)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
tf.logging.set_verbosity(tf.logging.DEBUG)
|
|
tl.logging.set_verbosity(tl.logging.DEBUG)
|
|
|
|
unittest.main()
|