forked from p32761584/tensorlayer3
91 lines
2.9 KiB
Python
91 lines
2.9 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
import os
|
|
import unittest
|
|
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
|
|
|
import tensorflow as tf
|
|
|
|
from tensorflow.contrib.slim.python.slim.nets.inception_v3 import inception_v3
|
|
from tensorflow.contrib.slim.python.slim.nets.inception_v3 import inception_v3_arg_scope
|
|
|
|
slim = tf.contrib.slim
|
|
keras = tf.keras
|
|
|
|
import tensorlayer as tl
|
|
|
|
from tests.utils import CustomTestCase
|
|
|
|
|
|
class Layer_Importer_Test(CustomTestCase):
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
|
|
cls.net_in = dict()
|
|
|
|
# ============================= #
|
|
# LambdaLayer
|
|
# ============================= #
|
|
x = tf.placeholder(tf.float32, shape=[None, 784])
|
|
cls.net_in["lambda"] = tl.layers.InputLayer(x, name='input')
|
|
|
|
# ============================= #
|
|
# SlimNetsLayer
|
|
# ============================= #
|
|
x = tf.placeholder(tf.float32, shape=[None, 299, 299, 3])
|
|
cls.net_in["slim"] = tl.layers.InputLayer(x, name='input_layer')
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
tf.reset_default_graph()
|
|
|
|
def test_lambda_layer(self):
|
|
|
|
def keras_block(x):
|
|
x = keras.layers.Dropout(0.8)(x)
|
|
x = keras.layers.Dense(100, activation='relu')(x)
|
|
# x = keras.layers.Dropout(0.8)(x)
|
|
# x = keras.layers.Dense(100, activation='relu')(x)
|
|
x = keras.layers.Dropout(0.5)(x)
|
|
logits = keras.layers.Dense(10, activation='linear')(x)
|
|
|
|
return logits
|
|
|
|
with self.assertNotRaises(Exception):
|
|
tl.layers.LambdaLayer(self.net_in["lambda"], fn=keras_block, name='keras')
|
|
|
|
def test_slim_layer(self):
|
|
|
|
with self.assertNotRaises(Exception):
|
|
with slim.arg_scope(inception_v3_arg_scope()):
|
|
# Alternatively, you should implement inception_v3 without TensorLayer as follow.
|
|
# logits, end_points = inception_v3(X, num_classes=1001,
|
|
# is_training=False)
|
|
tl.layers.SlimNetsLayer(
|
|
self.net_in["slim"],
|
|
slim_layer=inception_v3,
|
|
slim_args={
|
|
'num_classes': 1001,
|
|
'is_training': False,
|
|
# 'dropout_keep_prob' : 0.8, # for training
|
|
# 'min_depth' : 16,
|
|
# 'depth_multiplier' : 1.0,
|
|
# 'prediction_fn' : slim.softmax,
|
|
# 'spatial_squeeze' : True,
|
|
# 'reuse' : None,
|
|
# 'scope' : 'InceptionV3'
|
|
},
|
|
name='InceptionV3' # <-- the name should be the same with the ckpt model
|
|
)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
tf.logging.set_verbosity(tf.logging.DEBUG)
|
|
tl.logging.set_verbosity(tl.logging.DEBUG)
|
|
|
|
unittest.main()
|