forked from p32761584/tensorlayer3
139 lines
4.5 KiB
Python
139 lines
4.5 KiB
Python
import os
|
|
os.environ['TL_BACKEND'] = 'tensorflow'
|
|
import time
|
|
import multiprocessing
|
|
import tensorflow as tf
|
|
from tensorlayer.models import TrainOneStep
|
|
from tensorlayer.layers import Module
|
|
import tensorlayer as tl
|
|
from .densenet import builddensenet
|
|
|
|
|
|
# enable debug logging
|
|
tl.logging.set_verbosity(tl.logging.DEBUG)
|
|
|
|
# prepare cifar10 data
|
|
X_train, y_train, X_test, y_test = tl.files.load_cifar10_dataset(shape=(-1, 32, 32, 3), plotable=False)
|
|
|
|
|
|
# get the network
|
|
net = builddensenet("densenet-100")
|
|
|
|
# training settings
|
|
batch_size = 128
|
|
n_epoch = 500
|
|
learning_rate = 0.0001
|
|
print_freq = 5
|
|
n_step_epoch = int(len(y_train) / batch_size)
|
|
n_step = n_epoch * n_step_epoch
|
|
shuffle_buffer_size = 128
|
|
|
|
train_weights = net.trainable_weights
|
|
optimizer = tl.optimizers.Adam(learning_rate)
|
|
metrics = tl.metric.Accuracy()
|
|
|
|
|
|
def generator_train():
|
|
inputs = X_train
|
|
targets = y_train
|
|
if len(inputs) != len(targets):
|
|
raise AssertionError("The length of inputs and targets should be equal")
|
|
for _input, _target in zip(inputs, targets):
|
|
# yield _input.encode('utf-8'), _target.encode('utf-8')
|
|
yield _input, _target
|
|
|
|
|
|
def generator_test():
|
|
inputs = X_test
|
|
targets = y_test
|
|
if len(inputs) != len(targets):
|
|
raise AssertionError("The length of inputs and targets should be equal")
|
|
for _input, _target in zip(inputs, targets):
|
|
# yield _input.encode('utf-8'), _target.encode('utf-8')
|
|
yield _input, _target
|
|
|
|
|
|
def _map_fn_train(img, target):
|
|
# 1. Randomly crop a [height, width] section of the image.
|
|
img = tf.image.random_crop(img, [24, 24, 3])
|
|
# 2. Randomly flip the image horizontally.
|
|
img = tf.image.random_flip_left_right(img)
|
|
# 3. Randomly change brightness.
|
|
img = tf.image.random_brightness(img, max_delta=63)
|
|
# 4. Randomly change contrast.
|
|
img = tf.image.random_contrast(img, lower=0.2, upper=1.8)
|
|
# 5. Subtract off the mean and divide by the variance of the pixels.
|
|
img = tf.image.per_image_standardization(img)
|
|
target = tf.reshape(target, ())
|
|
return img, target
|
|
|
|
|
|
def _map_fn_test(img, target):
|
|
# 1. Crop the central [height, width] of the image.
|
|
img = tf.image.resize_with_pad(img, 24, 24)
|
|
# 2. Subtract off the mean and divide by the variance of the pixels.
|
|
img = tf.image.per_image_standardization(img)
|
|
img = tf.reshape(img, (24, 24, 3))
|
|
target = tf.reshape(target, ())
|
|
return img, target
|
|
|
|
|
|
# dataset API and augmentation
|
|
train_ds = tf.data.Dataset.from_generator(
|
|
generator_train, output_types=(tf.float32, tf.int32)
|
|
) # , output_shapes=((24, 24, 3), (1)))
|
|
train_ds = train_ds.map(_map_fn_train, num_parallel_calls=multiprocessing.cpu_count())
|
|
# train_ds = train_ds.repeat(n_epoch)
|
|
train_ds = train_ds.shuffle(shuffle_buffer_size)
|
|
train_ds = train_ds.prefetch(buffer_size=4096)
|
|
train_ds = train_ds.batch(batch_size)
|
|
# value = train_ds.make_one_shot_iterator().get_next()
|
|
|
|
test_ds = tf.data.Dataset.from_generator(
|
|
generator_test, output_types=(tf.float32, tf.int32)
|
|
) # , output_shapes=((24, 24, 3), (1)))
|
|
# test_ds = test_ds.shuffle(shuffle_buffer_size)
|
|
test_ds = test_ds.map(_map_fn_test, num_parallel_calls=multiprocessing.cpu_count())
|
|
# test_ds = test_ds.repeat(n_epoch)
|
|
test_ds = test_ds.prefetch(buffer_size=4096)
|
|
test_ds = test_ds.batch(batch_size)
|
|
# value_test = test_ds.make_one_shot_iterator().get_next()
|
|
|
|
|
|
class WithLoss(Module):
|
|
|
|
def __init__(self, net, loss_fn):
|
|
super(WithLoss, self).__init__()
|
|
self._net = net
|
|
self._loss_fn = loss_fn
|
|
|
|
def forward(self, data, label):
|
|
out = self._net(data)
|
|
loss = self._loss_fn(out, label)
|
|
return loss
|
|
|
|
|
|
net_with_loss = WithLoss(net, loss_fn=tl.cost.softmax_cross_entropy_with_logits)
|
|
net_with_train = TrainOneStep(net_with_loss, optimizer, train_weights)
|
|
|
|
for epoch in range(n_epoch):
|
|
start_time = time.time()
|
|
net.set_train()
|
|
train_loss, train_acc, n_iter = 0, 0, 0
|
|
for X_batch, y_batch in train_ds:
|
|
|
|
X_batch = tl.ops.convert_to_tensor(X_batch.numpy(), dtype=tl.float32)
|
|
y_batch = tl.ops.convert_to_tensor(y_batch.numpy(), dtype=tl.int64)
|
|
|
|
_loss_ce = net_with_train(X_batch, y_batch)
|
|
train_loss += _loss_ce
|
|
|
|
n_iter += 1
|
|
_logits = net(X_batch)
|
|
metrics.update(_logits, y_batch)
|
|
train_acc += metrics.result()
|
|
metrics.reset()
|
|
print("Epoch {} of {} took {}".format(epoch + 1, n_epoch, time.time() - start_time))
|
|
print(" train loss: {}".format(train_loss / n_iter))
|
|
print(" train acc: {}".format(train_acc / n_iter))
|