tensorlayer3/docs/user/get_start_model.rst

206 lines
6.0 KiB
ReStructuredText

.. _getstartmodel:
===============
Define a model
===============
TensorLayer provides two ways to define a model.
Sequential model allows you to build model in a fluent way while dynamic model allows you to fully control the forward process.
Sequential model
===============
.. code-block:: python
from tensorlayer.layers import SequentialLayer
from tensorlayer.layers import Dense
import tensorlayer as tl
def get_model():
layer_list = []
layer_list.append(Dense(n_units=800, act=tl.ReLU, in_channels=784, name='Dense1'))
layer_list.append(Dense(n_units=800, act=tl.ReLU, in_channels=800, name='Dense2'))
layer_list.append(Dense(n_units=10, act=tl.ReLU, in_channels=800, name='Dense3'))
MLP = SequentialLayer(layer_list)
return MLP
Dynamic model
=======================
In this case, you need to manually input the output shape of the previous layer to the new layer.
.. code-block:: python
import tensorlayer as tl
from tensorlayer.layers import Module
from tensorlayer.layers import Dropout, Dense
class CustomModel(Module):
def __init__(self):
super(CustomModel, self).__init__()
self.dropout1 = Dropout(keep=0.8)
self.dense1 = Dense(n_units=800, act=tl.ReLU, in_channels=784)
self.dropout2 = Dropout(keep=0.8)
self.dense2 = Dense(n_units=800, act=tl.ReLU, in_channels=800)
self.dropout3 = Dropout(keep=0.8)
self.dense3 = Dense(n_units=10, act=None, in_channels=800)
def forward(self, x, foo=False):
z = self.dropout1(x)
z = self.dense1(z)
z = self.dropout2(z)
z = self.dense2(z)
z = self.dropout3(z)
out = self.dense3(z)
if foo:
out = tf.nn.softmax(out)
return out
MLP = CustomModel()
MLP.set_eval()
outputs = MLP(data, foo=True) # controls the forward here
outputs = MLP(data, foo=False)
Dynamic model do not manually input the output shape
=======================
In this case, you do not manually input the output shape of the previous layer to the new layer.
.. code-block:: python
import tensorlayer as tl
from tensorlayer.layers import Module
from tensorlayer.layers import Dropout, Dense
class CustomModel(Module):
def __init__(self):
super(CustomModel, self).__init__()
self.dropout1 = Dropout(keep=0.8)
self.dense1 = Dense(n_units=800, act=tl.ReLU)
self.dropout2 = Dropout(keep=0.8)
self.dense2 = Dense(n_units=800, act=tl.ReLU)
self.dropout3 = Dropout(keep=0.8)
self.dense3 = Dense(n_units=10, act=None)
def forward(self, x, foo=False):
z = self.dropout1(x)
z = self.dense1(z)
z = self.dropout2(z)
z = self.dense2(z)
z = self.dropout3(z)
out = self.dense3(z)
if foo:
out = tf.nn.softmax(out)
return out
MLP = CustomModel()
MLP.init_build(tl.layers.Input(shape=(1, 784))) # init_build must be called to initialize the weights.
MLP.set_eval()
outputs = MLP(data, foo=True) # controls the forward here
outputs = MLP(data, foo=False)
Switching train/test modes
=============================
.. code-block:: python
# method 1: switch before forward
MLP.set_train() # enable dropout, batch norm moving avg ...
output = MLP(train_data)
... # training code here
Model.set_eval() # disable dropout, batch norm moving avg ...
output = MLP(test_data)
... # testing code here
# method 2: Using packaged training modules
model = tl.models.Model(network=MLP, loss_fn=tl.cost.softmax_cross_entropy_with_logits, optimizer=optimizer)
model.train(n_epoch=n_epoch, train_dataset=train_ds)
Reuse weights
=======================
For dynamic model, call the layer multiple time in forward function
.. code-block:: python
import tensorlayer as tl
from tensorlayer.layers import Module, Dense, Concat
class MyModel(Module):
def __init__(self):
super(MyModel, self).__init__()
self.dense_shared = Dense(n_units=800, act=tl.ReLU, in_channels=784)
self.dense1 = Dense(n_units=10, act=tl.ReLU, in_channels=800)
self.dense2 = Dense(n_units=10, act=tl.ReLU, in_channels=800)
self.cat = Concat()
def forward(self, x):
x1 = self.dense_shared(x) # call dense_shared twice
x2 = self.dense_shared(x)
x1 = self.dense1(x1)
x2 = self.dense2(x2)
out = self.cat([x1, x2])
return out
model = MyModel()
Print model information
=======================
.. code-block:: python
print(MLP) # simply call print function
# Model(
# (_inputlayer): Input(shape=[None, 784], name='_inputlayer')
# (dropout): Dropout(keep=0.8, name='dropout')
# (dense): Dense(n_units=800, relu, in_channels='784', name='dense')
# (dropout_1): Dropout(keep=0.8, name='dropout_1')
# (dense_1): Dense(n_units=800, relu, in_channels='800', name='dense_1')
# (dropout_2): Dropout(keep=0.8, name='dropout_2')
# (dense_2): Dense(n_units=10, None, in_channels='800', name='dense_2')
# )
Get specific weights
=======================
We can get the specific weights by indexing or naming.
.. code-block:: python
# indexing
all_weights = MLP.all_weights
some_weights = MLP.all_weights[1:3]
Save and restore model
=======================
We provide two ways to save and restore models
Save weights only
------------------
.. code-block:: python
MLP.save_weights('./model_weights.npz') # by default, file will be in hdf5 format
MLP.load_weights('./model_weights.npz')
Save model weights (optional)
-----------------------------------------------
.. code-block:: python
# When using packaged training modules. Saving and loading the model can be done as follows
model = tl.models.Model(network=MLP, loss_fn=tl.cost.softmax_cross_entropy_with_logits, optimizer=optimizer)
model.train(n_epoch=n_epoch, train_dataset=train_ds)
model.save_weights('./model.npz', format='npz_dict')
model.load_weights('./model.npz', format='npz_dict')