tensorlayer3/tests/layers/test_layers_normalization.py

210 lines
6.6 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import unittest
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorlayer as tl
from tensorlayer.layers import *
from tests.utils import CustomTestCase
class Laye_BatchNorm_Test(CustomTestCase):
@classmethod
def setUpClass(cls):
x_0_input_shape = [None, 10]
x_1_input_shape = [None, 100, 1]
x_2_input_shape = [None, 100, 100, 3]
x_3_input_shape = [None, 100, 100, 100, 3]
batchsize = 2
cls.x0 = tl.ops.truncated_normal(shape=[batchsize] + x_0_input_shape[1:])
cls.x1 = tl.ops.truncated_normal([batchsize] + x_1_input_shape[1:])
cls.x2 = tl.ops.truncated_normal([batchsize] + x_2_input_shape[1:])
cls.x3 = tl.ops.truncated_normal([batchsize] + x_3_input_shape[1:])
## Base
ni_1 = Input(x_1_input_shape, name='test_ni1')
nn_1 = Conv1d(n_filter=32, filter_size=5, stride=2, name='test_conv1d')(ni_1)
n1_b = BatchNorm(name='test_conv')(nn_1)
cls.n1_b = n1_b
ni_2 = Input(x_2_input_shape, name='test_ni2')
nn_2 = Conv2d(n_filter=32, filter_size=(3, 3), strides=(2, 2), name='test_conv2d')(ni_2)
n2_b = BatchNorm(name='test_bn2d')(nn_2)
cls.n2_b = n2_b
ni_3 = Input(x_3_input_shape, name='test_ni2')
nn_3 = Conv3d(n_filter=32, filter_size=(3, 3, 3), strides=(2, 2, 2), name='test_conv3d')(ni_3)
n3_b = BatchNorm(name='test_bn3d')(nn_3)
cls.n3_b = n3_b
class bn_0d_model(tl.layers.Module):
def __init__(self):
super(bn_0d_model, self).__init__()
self.fc = Dense(32, in_channels=10)
self.bn = BatchNorm(num_features=32, name='test_bn1d')
def forward(self, x):
x = self.bn(self.fc(x))
return x
dynamic_base = bn_0d_model()
cls.n0_b = dynamic_base(cls.x0)
## 0D ========================================================================
nin_0 = Input(x_0_input_shape, name='test_in1')
n0 = Dense(32)(nin_0)
n0 = BatchNorm1d(name='test_bn0d')(n0)
cls.n0 = n0
class bn_0d_model(tl.layers.Module):
def __init__(self):
super(bn_0d_model, self).__init__(name='test_bn_0d_model')
self.fc = Dense(32, in_channels=10)
self.bn = BatchNorm1d(num_features=32, name='test_bn1d')
def forward(self, x):
x = self.bn(self.fc(x))
return x
cls.dynamic_0d = bn_0d_model()
## 1D ========================================================================
nin_1 = Input(x_1_input_shape, name='test_in1')
n1 = Conv1d(n_filter=32, filter_size=5, stride=2, name='test_conv1d')(nin_1)
n1 = BatchNorm1d(name='test_bn1d')(n1)
cls.n1 = n1
class bn_1d_model(tl.layers.Module):
def __init__(self):
super(bn_1d_model, self).__init__(name='test_bn_1d_model')
self.conv = Conv1d(n_filter=32, filter_size=5, stride=2, name='test_conv1d', in_channels=1)
self.bn = BatchNorm1d(num_features=32, name='test_bn1d')
def forward(self, x):
x = self.bn(self.conv(x))
return x
cls.dynamic_1d = bn_1d_model()
## 2D ========================================================================
nin_2 = Input(x_2_input_shape, name='test_in2')
n2 = Conv2d(n_filter=32, filter_size=(3, 3), strides=(2, 2), name='test_conv2d')(nin_2)
n2 = BatchNorm2d(name='test_bn2d')(n2)
cls.n2 = n2
class bn_2d_model(tl.layers.Module):
def __init__(self):
super(bn_2d_model, self).__init__(name='test_bn_2d_model')
self.conv = Conv2d(n_filter=32, filter_size=(3, 3), strides=(2, 2), name='test_conv2d', in_channels=3)
self.bn = BatchNorm2d(num_features=32, name='test_bn2d')
def forward(self, x):
x = self.bn(self.conv(x))
return x
cls.dynamic_2d = bn_2d_model()
## 3D ========================================================================
nin_3 = Input(x_3_input_shape, name='test_in3')
n3 = Conv3d(n_filter=32, filter_size=(3, 3, 3), strides=(2, 2, 2), name='test_conv3d')(nin_3)
n3 = BatchNorm3d(name='test_bn3d', act=tl.ReLU)(n3)
cls.n3 = n3
class bn_3d_model(tl.layers.Module):
def __init__(self):
super(bn_3d_model, self).__init__(name='test_bn_3d_model')
self.conv = Conv3d(
n_filter=32, filter_size=(3, 3, 3), strides=(2, 2, 2), name='test_conv3d', in_channels=3
)
self.bn = BatchNorm3d(num_features=32, name='test_bn3d')
def forward(self, x):
x = self.bn(self.conv(x))
return x
cls.dynamic_3d = bn_3d_model()
@classmethod
def tearDownClass(cls):
pass
# tf.reset_default_graph()
def test_BatchNorm(self):
self.assertEqual(self.n1_b.shape[1:], (50, 32))
self.assertEqual(self.n2_b.shape[1:], (50, 50, 32))
self.assertEqual(self.n3_b.shape[1:], (50, 50, 50, 32))
self.assertEqual(self.n0_b.shape[1:], (32))
print("test_BatchNorm OK")
def test_BatchNorm0d(self):
self.assertEqual(self.n0.shape[1:], (32))
def test_BatchNorm1d(self):
self.assertEqual(self.n1.shape[1:], (50, 32))
def test_BatchNorm2d(self):
self.assertEqual(self.n2.shape[1:], (50, 50, 32))
def test_BatchNorm3d(self):
self.assertEqual(self.n3.shape[1:], (50, 50, 50, 32))
def test_dataformat(self):
bn1d = BatchNorm1d(data_format='channels_first', num_features=32)
bn2d = BatchNorm2d(data_format='channels_first', num_features=32)
bn3d = BatchNorm3d(data_format='channels_first', num_features=32)
bn = BatchNorm(data_format='channels_first')
try:
bn_fail = BatchNorm1d(data_format='xyz', num_features=32)
except Exception as e:
self.assertIsInstance(e, ValueError)
print(e)
def test_exception(self):
try:
bn = BatchNorm(num_features=32)
except Exception as e:
self.assertIsInstance(e, ValueError)
print(e)
try:
ni = Input([None, 100, 1], name='test_ni1')
bn = BatchNorm(decay=1.5)(ni)
except Exception as e:
self.assertIsInstance(e, ValueError)
print(e)
if __name__ == '__main__':
tl.logging.set_verbosity(tl.logging.DEBUG)
unittest.main()