tensorlayer3/tensorlayer/layers/utils.py

443 lines
13 KiB
Python

#! /usr/bin/python
# -*- coding: utf-8 -*-
import tensorflow as tf
from tensorflow.python.ops.rnn_cell import LSTMStateTuple
import tensorlayer as tl
from tensorlayer import logging
from tensorlayer.decorators import deprecated, deprecated_alias
from tensorlayer.backend.ops.load_backend import BACKEND
__all__ = [
'cabs',
'compute_alpha',
'flatten_reshape',
'get_collection_trainable',
'get_layers_with_name',
'get_variables_with_name',
'initialize_global_variables',
'initialize_rnn_state',
'list_remove_repeat',
'merge_networks',
'print_all_variables',
'quantize',
'quantize_active',
'quantize_weight',
'quantize_active_overflow',
'quantize_weight_overflow',
'set_name_reuse',
'ternary_operation',
]
########## Module Public Functions ##########
def cabs(x):
return tf.minimum(1.0, tf.abs(x), name='cabs')
def compute_alpha(x):
"""Computing the scale parameter."""
threshold = _compute_threshold(x)
alpha1_temp1 = tf.where(tf.greater(x, threshold), x, tf.zeros_like(x, tf.float32))
alpha1_temp2 = tf.where(tf.less(x, -threshold), x, tf.zeros_like(x, tf.float32))
alpha_array = tf.add(alpha1_temp1, alpha1_temp2, name=None)
alpha_array_abs = tf.abs(alpha_array)
alpha_array_abs1 = tf.where(
tf.greater(alpha_array_abs, 0), tf.ones_like(alpha_array_abs, tf.float32),
tf.zeros_like(alpha_array_abs, tf.float32)
)
alpha_sum = tf.reduce_sum(input_tensor=alpha_array_abs)
n = tf.reduce_sum(input_tensor=alpha_array_abs1)
# alpha = tf.compat.v1.div(alpha_sum, n)
alpha = tf.math.divide(alpha_sum, n)
return alpha
def flatten_reshape(variable, name='flatten'):
"""Reshapes a high-dimension vector input.
[batch_size, mask_row, mask_col, n_mask] ---> [batch_size, mask_row x mask_col x n_mask]
Parameters
----------
variable : TensorFlow variable or tensor
The variable or tensor to be flatten.
name : str
A unique layer name.
Returns
-------
Tensor
Flatten Tensor
"""
dim = 1
for d in tl.get_tensor_shape(variable)[1:]: # variable.get_shape()[1:].as_list():
dim *= d
return tl.reshape(variable, shape=[-1, dim])
def get_collection_trainable(name=''):
variables = []
for p in tf.compat.v1.trainable_variables():
# print(p.name.rpartition('/')[0], self.name)
if p.name.rpartition('/')[0] == name:
variables.append(p)
return variables
@deprecated_alias(printable='verbose', end_support_version=1.9) # TODO remove this line for the 1.9 release
def get_layers_with_name(net, name="", verbose=False):
"""Get a list of layers' output in a network by a given name scope.
Parameters
-----------
net : :class:`Layer`
The last layer of the network.
name : str
Get the layers' output that contain this name.
verbose : boolean
If True, print information of all the layers' output
Returns
--------
list of Tensor
A list of layers' output (TensorFlow tensor)
Examples
---------
>>> import tensorlayer as tl
>>> layers = tl.layers.get_layers_with_name(net, "CNN", True)
"""
logging.info(" [*] geting layers with %s" % name)
layers = []
i = 0
for layer in net.all_layers:
# logging.info(type(layer.name))
if name in layer.name:
layers.append(layer)
if verbose:
logging.info(" got {:3}: {:15} {}".format(i, layer.name, str(layer.get_shape())))
i = i + 1
return layers
def get_variable_with_initializer(scope_name, var_name, shape, init=tl.initializers.random_normal(), trainable=True):
# FIXME: documentation needed
var_name = scope_name + "/" + var_name
# FIXME: not sure whether this is correct?
# TODO mindspore weights shape : [out_channel, in_channel, kernel_h, kernel_w]
if BACKEND == 'mindspore':
if len(shape) == 2:
pass
else:
shape = shape[::-1]
initial_value = init(shape=shape)
if BACKEND == 'dragon':
return initial_value
var = tl.Variable(initial_value=initial_value, name=var_name, trainable=trainable)
return var
@deprecated_alias(printable='verbose', end_support_version=1.9) # TODO remove this line for the 1.9 release
def get_variables_with_name(name=None, train_only=True, verbose=False):
"""Get a list of TensorFlow variables by a given name scope.
Parameters
----------
name : str
Get the variables that contain this name.
train_only : boolean
If Ture, only get the trainable variables.
verbose : boolean
If True, print the information of all variables.
Returns
-------
list of Tensor
A list of TensorFlow variables
Examples
--------
>>> import tensorlayer as tl
>>> dense_vars = tl.layers.get_variables_with_name('dense', True, True)
"""
if name is None:
raise Exception("please input a name")
logging.info(" [*] geting variables with %s" % name)
# tvar = tf.trainable_variables() if train_only else tf.all_variables()
if train_only:
t_vars = tf.compat.v1.trainable_variables()
else:
t_vars = tf.compat.v1.global_variables()
d_vars = [var for var in t_vars if name in var.name]
if verbose:
for idx, v in enumerate(d_vars):
logging.info(" got {:3}: {:15} {}".format(idx, v.name, str(v.get_shape())))
return d_vars
@deprecated(
date="2018-09-30", instructions="This API is deprecated in favor of `sess.run(tf.global_variables_initializer())`"
)
def initialize_global_variables(sess):
"""Initialize the global variables of TensorFlow.
Run ``sess.run(tf.global_variables_initializer())`` for TF 0.12+ or
``sess.run(tf.initialize_all_variables())`` for TF 0.11.
Parameters
----------
sess : Session
TensorFlow session.
"""
if sess is None:
raise AssertionError('The session must be defined')
sess.run(tf.compat.v1.global_variables_initializer())
def initialize_rnn_state(state, feed_dict=None):
"""Returns the initialized RNN state.
The inputs are `LSTMStateTuple` or `State` of `RNNCells`, and an optional `feed_dict`.
Parameters
----------
state : RNN state.
The TensorFlow's RNN state.
feed_dict : dictionary
Initial RNN state; if None, returns zero state.
Returns
-------
RNN state
The TensorFlow's RNN state.
"""
if isinstance(state, LSTMStateTuple):
c = state.c.eval(feed_dict=feed_dict)
h = state.h.eval(feed_dict=feed_dict)
return c, h
else:
new_state = state.eval(feed_dict=feed_dict)
return new_state
def list_remove_repeat(x):
"""Remove the repeated items in a list, and return the processed list.
You may need it to create merged layer like Concat, Elementwise and etc.
Parameters
----------
x : list
Input
Returns
-------
list
A list that after removing it's repeated items
Examples
-------
>>> l = [2, 3, 4, 2, 3]
>>> l = list_remove_repeat(l)
[2, 3, 4]
"""
y = []
for i in x:
if i not in y:
y.append(i)
return y
def merge_networks(layers=None):
"""Merge all parameters, layers and dropout probabilities to a :class:`Layer`.
The output of return network is the first network in the list.
Parameters
----------
layers : list of :class:`Layer`
Merge all parameters, layers and dropout probabilities to the first layer in the list.
Returns
--------
:class:`Layer`
The network after merging all parameters, layers and dropout probabilities to the first network in the list.
Examples
---------
>>> import tensorlayer as tl
>>> n1 = ...
>>> n2 = ...
>>> n1 = tl.layers.merge_networks([n1, n2])
"""
if layers is None:
raise Exception("layers should be a list of TensorLayer's Layers.")
layer = layers[0]
all_params = []
all_layers = []
all_drop = {}
for l in layers:
all_params.extend(l.all_params)
all_layers.extend(l.all_layers)
all_drop.update(l.all_drop)
layer.all_params = list(all_params)
layer.all_layers = list(all_layers)
layer.all_drop = dict(all_drop)
layer.all_layers = list_remove_repeat(layer.all_layers)
layer.all_params = list_remove_repeat(layer.all_params)
return layer
def print_all_variables(train_only=False):
"""Print information of trainable or all variables,
without ``tl.layers.initialize_global_variables(sess)``.
Parameters
----------
train_only : boolean
Whether print trainable variables only.
- If True, print the trainable variables.
- If False, print all variables.
"""
# tvar = tf.trainable_variables() if train_only else tf.all_variables()
if train_only:
t_vars = tf.compat.v1.trainable_variables()
logging.info(" [*] printing trainable variables")
else:
t_vars = tf.compat.v1.global_variables()
logging.info(" [*] printing global variables")
for idx, v in enumerate(t_vars):
logging.info(" var {:3}: {:15} {}".format(idx, str(v.get_shape()), v.name))
def quantize(x):
# ref: https://github.com/AngusG/tensorflow-xnor-bnn/blob/master/models/binary_net.py#L70
# https://github.com/itayhubara/BinaryNet.tf/blob/master/nnUtils.py
with tf.compat.v1.get_default_graph().gradient_override_map({"Sign": "TL_Sign_QuantizeGrad"}):
return tf.sign(x)
def quantize_active(x, bitA):
if bitA == 32:
return x
return _quantize_dorefa(x, bitA)
def quantize_weight(x, bitW, force_quantization=False):
G = tf.compat.v1.get_default_graph()
if bitW == 32 and not force_quantization:
return x
if bitW == 1: # BWN
with G.gradient_override_map({"Sign": "Identity"}):
E = tf.stop_gradient(tf.reduce_mean(input_tensor=tf.abs(x)))
return tf.sign(x / E) * E
x = tf.clip_by_value(x * 0.5 + 0.5, 0.0, 1.0) # it seems as though most weights are within -1 to 1 region anyways
return 2 * _quantize_dorefa(x, bitW) - 1
def quantize_active_overflow(x, bitA):
if bitA == 32:
return x
return _quantize_overflow(x, bitA)
def quantize_weight_overflow(x, bitW):
if bitW == 32:
return x
return _quantize_overflow(x, bitW)
@deprecated(date="2018-06-30", instructions="TensorLayer relies on TensorFlow to check name reusing")
def set_name_reuse(enable=True):
logging.warning('this method is DEPRECATED and has no effect, please remove it from your code.')
def ternary_operation(x):
"""Ternary operation use threshold computed with weights."""
g = tf.compat.v1.get_default_graph()
with g.gradient_override_map({"Sign": "Identity"}):
threshold = _compute_threshold(x)
x = tf.sign(tf.add(tf.sign(tf.add(x, threshold)), tf.sign(tf.add(x, -threshold))))
return x
########## Module Private Functions ##########
@tf.RegisterGradient("TL_Sign_QuantizeGrad")
def _quantize_grad(op, grad):
"""Clip and binarize tensor using the straight through estimator (STE) for the gradient."""
return tf.clip_by_value(grad, -1, 1)
def _quantize_dorefa(x, k):
G = tf.compat.v1.get_default_graph()
n = float(2**k - 1)
with G.gradient_override_map({"Round": "Identity"}):
return tf.round(x * n) / n
def _quantize_overflow(x, k):
G = tf.compat.v1.get_default_graph()
n = float(2**k - 1)
max_value = tf.reduce_max(input_tensor=x)
min_value = tf.reduce_min(input_tensor=x)
with G.gradient_override_map({"Round": "Identity"}):
step = tf.stop_gradient((max_value - min_value) / n)
return tf.round((tf.maximum(tf.minimum(x, max_value), min_value) - min_value) / step) * step + min_value
def _compute_threshold(x):
"""
ref: https://github.com/XJTUWYD/TWN
Computing the threshold.
"""
x_sum = tf.reduce_sum(input_tensor=tf.abs(x), axis=None, keepdims=False, name=None)
# threshold = tf.compat.v1.div(x_sum, tf.cast(tf.size(input=x), tf.float32), name=None)
threshold = tf.math.divide(x_sum, tf.cast(tf.size(input=x), tf.float32), name=None)
threshold = tf.multiply(0.7, threshold, name=None)
return threshold
def mean_var_with_update(update_moving_mean, update_moving_variance, mean, variance):
with tf.control_dependencies([update_moving_mean, update_moving_variance]):
return tf.identity(mean), tf.identity(variance)
def w_fold(w, gama, var, epsilon):
return tf.compat.v1.div(tf.multiply(gama, w), tf.sqrt(var + epsilon))
def bias_fold(beta, gama, mean, var, epsilon):
return tf.subtract(beta, tf.compat.v1.div(tf.multiply(gama, mean), tf.sqrt(var + epsilon)))