forked from TensorLayer/tensorlayer3
175 lines
6.1 KiB
Python
175 lines
6.1 KiB
Python
#! /usr/bin/python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
import tensorlayer as tl
|
|
from tensorlayer import logging
|
|
from tensorlayer.layers.core import Module
|
|
from tensorlayer.layers.utils import (quantize_active_overflow, quantize_weight_overflow)
|
|
|
|
__all__ = ['QuanConv2d']
|
|
|
|
|
|
class QuanConv2d(Module):
|
|
"""The :class:`QuanConv2d` class is a quantized convolutional layer without BN, which weights are 'bitW' bits and the output of the previous layer
|
|
are 'bitA' bits while inferencing.
|
|
Note that, the bias vector would not be binarized.
|
|
|
|
Parameters
|
|
----------
|
|
With TensorLayer
|
|
|
|
n_filter : int
|
|
The number of filters.
|
|
filter_size : tuple of int
|
|
The filter size (height, width).
|
|
strides : tuple of int
|
|
The sliding window strides of corresponding input dimensions.
|
|
It must be in the same order as the ``shape`` parameter.
|
|
act : activation function
|
|
The activation function of this layer.
|
|
padding : str
|
|
The padding algorithm type: "SAME" or "VALID".
|
|
bitW : int
|
|
The bits of this layer's parameter
|
|
bitA : int
|
|
The bits of the output of previous layer
|
|
use_gemm : boolean
|
|
If True, use gemm instead of ``tf.matmul`` for inference.
|
|
TODO: support gemm
|
|
data_format : str
|
|
"channels_last" (NHWC, default) or "channels_first" (NCHW).
|
|
dilation_rate : tuple of int
|
|
Specifying the dilation rate to use for dilated convolution.
|
|
W_init : initializer
|
|
The initializer for the the weight matrix.
|
|
b_init : initializer or None
|
|
The initializer for the the bias vector. If None, skip biases.
|
|
in_channels : int
|
|
The number of in channels.
|
|
name : None or str
|
|
A unique layer name.
|
|
|
|
Examples
|
|
---------
|
|
With TensorLayer
|
|
|
|
>>> net = tl.layers.Input([8, 12, 12, 64], name='input')
|
|
>>> quanconv2d = tl.layers.QuanConv2d(
|
|
... n_filter=32, filter_size=(5, 5), strides=(1, 1), act=tl.ReLU, padding='SAME', name='quancnn2d'
|
|
... )(net)
|
|
>>> print(quanconv2d)
|
|
>>> output shape : (8, 12, 12, 32)
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
bitW=8,
|
|
bitA=8,
|
|
n_filter=32,
|
|
filter_size=(3, 3),
|
|
strides=(1, 1),
|
|
act=None,
|
|
padding='SAME',
|
|
use_gemm=False,
|
|
data_format="channels_last",
|
|
dilation_rate=(1, 1),
|
|
W_init=tl.initializers.truncated_normal(stddev=0.02),
|
|
b_init=tl.initializers.constant(value=0.0),
|
|
in_channels=None,
|
|
name=None # 'quan_cnn2d',
|
|
):
|
|
super().__init__(name, act=act)
|
|
self.bitW = bitW
|
|
self.bitA = bitA
|
|
self.n_filter = n_filter
|
|
self.filter_size = filter_size
|
|
self.strides = self._strides = strides
|
|
self.padding = padding
|
|
self.use_gemm = use_gemm
|
|
self.data_format = data_format
|
|
self.dilation_rate = self._dilation_rate = dilation_rate
|
|
self.W_init = W_init
|
|
self.b_init = b_init
|
|
self.in_channels = in_channels
|
|
|
|
if self.in_channels:
|
|
self.build(None)
|
|
self._built = True
|
|
|
|
logging.info(
|
|
"QuanConv2d %s: n_filter: %d filter_size: %s strides: %s pad: %s act: %s" % (
|
|
self.name, n_filter, str(filter_size), str(strides), padding,
|
|
self.act.__class__.__name__ if self.act is not None else 'No Activation'
|
|
)
|
|
)
|
|
|
|
if self.use_gemm:
|
|
raise Exception("TODO. The current version use tf.matmul for inferencing.")
|
|
|
|
if len(self.strides) != 2:
|
|
raise ValueError("len(strides) should be 2.")
|
|
|
|
def __repr__(self):
|
|
actstr = self.act.__name__ if self.act is not None else 'No Activation'
|
|
s = (
|
|
'{classname}(in_channels={in_channels}, out_channels={n_filter}, kernel_size={filter_size}'
|
|
', strides={strides}, padding={padding}'
|
|
)
|
|
if self.dilation_rate != (1, ) * len(self.dilation_rate):
|
|
s += ', dilation={dilation_rate}'
|
|
if self.b_init is None:
|
|
s += ', bias=False'
|
|
s += (', ' + actstr)
|
|
if self.name is not None:
|
|
s += ', name=\'{name}\''
|
|
s += ')'
|
|
return s.format(classname=self.__class__.__name__, **self.__dict__)
|
|
|
|
def build(self, inputs_shape):
|
|
if self.data_format == 'channels_last':
|
|
self.data_format = 'NHWC'
|
|
if self.in_channels is None:
|
|
self.in_channels = inputs_shape[-1]
|
|
self._strides = [1, self._strides[0], self._strides[1], 1]
|
|
self._dilation_rate = [1, self._dilation_rate[0], self._dilation_rate[1], 1]
|
|
elif self.data_format == 'channels_first':
|
|
self.data_format = 'NCHW'
|
|
if self.in_channels is None:
|
|
self.in_channels = inputs_shape[1]
|
|
self._strides = [1, 1, self._strides[0], self._strides[1]]
|
|
self._dilation_rate = [1, 1, self._dilation_rate[0], self._dilation_rate[1]]
|
|
else:
|
|
raise Exception("data_format should be either channels_last or channels_first")
|
|
|
|
self.filter_shape = (self.filter_size[0], self.filter_size[1], self.in_channels, self.n_filter)
|
|
|
|
self.W = self._get_weights("filters", shape=self.filter_shape, init=self.W_init)
|
|
if self.b_init:
|
|
self.b = self._get_weights("biases", shape=(self.n_filter, ), init=self.b_init)
|
|
self.bias_add = tl.ops.BiasAdd(data_format=self.data_format)
|
|
|
|
self.conv2d = tl.ops.Conv2D(
|
|
strides=self.strides, padding=self.padding, data_format=self.data_format, dilations=self._dilation_rate
|
|
)
|
|
|
|
def forward(self, inputs):
|
|
if self._forward_state == False:
|
|
if self._built == False:
|
|
self.build(tl.get_tensor_shape(inputs))
|
|
self._built = True
|
|
self._forward_state = True
|
|
|
|
inputs = quantize_active_overflow(inputs, self.bitA)
|
|
|
|
W_ = quantize_weight_overflow(self.W, self.bitW)
|
|
|
|
outputs = self.conv2d(inputs, W_)
|
|
|
|
if self.b_init:
|
|
outputs = self.bias_add(outputs, self.b)
|
|
if self.act:
|
|
outputs = self.act(outputs)
|
|
|
|
return outputs
|