tensorlayer3/tensorlayer/layers/convolution/deformable_conv.py

303 lines
12 KiB
Python

#! /usr/bin/python
# -*- coding: utf-8 -*-
import tensorlayer as tl
from tensorlayer import logging
from tensorlayer.layers.core import Module
__all__ = [
'DeformableConv2d',
]
class DeformableConv2d(Module):
"""The :class:`DeformableConv2d` class is a 2D
`Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`__.
Parameters
----------
offset_layer : tl.Tensor
To predict the offset of convolution operations.
The shape is (batchsize, input height, input width, 2*(number of element in the convolution kernel))
e.g. if apply a 3*3 kernel, the number of the last dimension should be 18 (2*3*3)
n_filter : int
The number of filters.
filter_size : tuple of int
The filter size (height, width).
act : activation function
The activation function of this layer.
padding : str
The padding algorithm type: "SAME" or "VALID".
W_init : initializer
The initializer for the weight matrix.
b_init : initializer or None
The initializer for the bias vector. If None, skip biases.
in_channels : int
The number of in channels.
name : str
A unique layer name.
Examples
--------
With TensorLayer
>>> net = tl.layers.Input([5, 10, 10, 16], name='input')
>>> offset1 = tl.layers.Conv2d(
... n_filter=18, filter_size=(3, 3), strides=(1, 1), padding='SAME', name='offset1'
... )(net)
>>> deformconv1 = tl.layers.DeformableConv2d(
... offset_layer=offset1, n_filter=32, filter_size=(3, 3), name='deformable1'
... )(net)
>>> offset2 = tl.layers.Conv2d(
... n_filter=18, filter_size=(3, 3), strides=(1, 1), padding='SAME', name='offset2'
... )(deformconv1)
>>> deformconv2 = tl.layers.DeformableConv2d(
... offset_layer=offset2, n_filter=64, filter_size=(3, 3), name='deformable2'
... )(deformconv1)
References
----------
- The deformation operation was adapted from the implementation in `here <https://github.com/kastnerkyle/deform-conv>`__
Notes
-----
- The padding is fixed to 'SAME'.
- The current implementation is not optimized for memory usgae. Please use it carefully.
"""
# @deprecated_alias(layer='prev_layer', end_support_version=1.9) # TODO remove this line for the 1.9 release
def __init__(
self,
offset_layer=None,
# shape=(3, 3, 1, 100),
n_filter=32,
filter_size=(3, 3),
act=None,
padding='SAME',
W_init=tl.initializers.truncated_normal(stddev=0.02),
b_init=tl.initializers.constant(value=0.0),
in_channels=None,
name=None # 'deformable_conv_2d',
):
super().__init__(name, act=act)
self.offset_layer = offset_layer
self.n_filter = n_filter
self.filter_size = filter_size
self.padding = padding
self.W_init = W_init
self.b_init = b_init
self.in_channels = in_channels
self.kernel_n = filter_size[0] * filter_size[1]
if self.offset_layer.get_shape()[-1] != 2 * self.kernel_n:
raise AssertionError("offset.get_shape()[-1] is not equal to: %d" % 2 * self.kernel_n)
logging.info(
"DeformableConv2d %s: n_filter: %d, filter_size: %s act: %s" % (
self.name, self.n_filter, str(self.filter_size
), self.act.__class__.__name__ if self.act is not None else 'No Activation'
)
)
def __repr__(self):
actstr = self.act.__class__.__name__ if self.act is not None else 'No Activation'
s = (
'{classname}(in_channels={in_channels}, out_channels={n_filter}, kernel_size={filter_size}'
', padding={padding}'
)
if self.b_init is None:
s += ', bias=False'
s += (', ' + actstr)
if self.name is not None:
s += ', name=\'{name}\''
s += ')'
return s.format(classname=self.__class__.__name__, **self.__dict__)
def build(self, inputs_shape):
self.in_channels = inputs_shape[-1]
self.input_h = int(inputs_shape[1])
self.input_w = int(inputs_shape[2])
initial_offsets = tl.ops.stack(
tl.ops.meshgrid(tl.ops.range(self.filter_size[0]), tl.ops.range(self.filter_size[1]), indexing='ij')
) # initial_offsets --> (kh, kw, 2)
initial_offsets = tl.ops.reshape(initial_offsets, (-1, 2)) # initial_offsets --> (n, 2)
initial_offsets = tl.ops.expand_dims(initial_offsets, 0) # initial_offsets --> (1, n, 2)
initial_offsets = tl.ops.expand_dims(initial_offsets, 0) # initial_offsets --> (1, 1, n, 2)
initial_offsets = tl.ops.tile(
initial_offsets, [self.input_h, self.input_w, 1, 1]
) # initial_offsets --> (h, w, n, 2)
initial_offsets = tl.ops.cast(initial_offsets, 'float32')
grid = tl.ops.meshgrid(
tl.ops.range(
-int((self.filter_size[0] - 1) / 2.0), int(self.input_h - int((self.filter_size[0] - 1) / 2.0)), 1
),
tl.ops.range(
-int((self.filter_size[1] - 1) / 2.0), int(self.input_w - int((self.filter_size[1] - 1) / 2.0)), 1
), indexing='ij'
)
grid = tl.ops.stack(grid, axis=-1)
grid = tl.ops.cast(grid, 'float32') # grid --> (h, w, 2)
grid = tl.ops.expand_dims(grid, 2) # grid --> (h, w, 1, 2)
grid = tl.ops.tile(grid, [1, 1, self.kernel_n, 1]) # grid --> (h, w, n, 2)
self.grid_offset = grid + initial_offsets # grid_offset --> (h, w, n, 2)
self.filter_shape = (1, 1, self.kernel_n, self.in_channels, self.n_filter)
self.W = self._get_weights("W_deformableconv2d", shape=self.filter_shape, init=self.W_init)
if self.b_init:
self.b = self._get_weights("b_deformableconv2d", shape=(self.n_filter, ), init=self.b_init)
self.conv3d = tl.ops.Conv3D(strides=[1, 1, 1, 1, 1], padding='VALID')
self.bias_add = tl.ops.BiasAdd()
def forward(self, inputs):
if self._forward_state == False:
if self._built == False:
self.build(tl.get_tensor_shape(inputs))
self._built = True
self._forward_state = True
# shape = (filter_size[0], filter_size[1], pre_channel, n_filter)
offset = self.offset_layer
grid_offset = self.grid_offset
input_deform = self._tf_batch_map_offsets(inputs, offset, grid_offset)
outputs = self.conv3d(input=input_deform, filters=self.W)
outputs = tl.ops.reshape(
tensor=outputs, shape=[outputs.get_shape()[0], self.input_h, self.input_w, self.n_filter]
)
if self.b_init:
outputs = self.bias_add(outputs, self.b)
if self.act:
outputs = self.act(outputs)
return outputs
def _to_bc_h_w(self, x, x_shape):
"""(b, h, w, c) -> (b*c, h, w)"""
x = tl.ops.transpose(a=x, perm=[0, 3, 1, 2])
x = tl.ops.reshape(x, (-1, x_shape[1], x_shape[2]))
return x
def _to_b_h_w_n_c(self, x, x_shape):
"""(b*c, h, w, n) -> (b, h, w, n, c)"""
x = tl.ops.reshape(x, (-1, x_shape[4], x_shape[1], x_shape[2], x_shape[3]))
x = tl.ops.transpose(a=x, perm=[0, 2, 3, 4, 1])
return x
def tf_flatten(self, a):
"""Flatten tensor"""
return tl.ops.reshape(a, [-1])
def _get_vals_by_coords(self, inputs, coords, idx, out_shape):
indices = tl.ops.stack(
[idx, self.tf_flatten(coords[:, :, :, :, 0]),
self.tf_flatten(coords[:, :, :, :, 1])], axis=-1
)
vals = tl.ops.gather_nd(inputs, indices)
vals = tl.ops.reshape(vals, out_shape)
return vals
def _tf_repeat(self, a, repeats):
"""Tensorflow version of np.repeat for 1D"""
# https://github.com/tensorflow/tensorflow/issues/8521
if len(a.get_shape()) != 1:
raise AssertionError("This is not a 1D Tensor")
a = tl.ops.expand_dims(a, -1)
a = tl.ops.tile(a, [1, repeats])
a = self.tf_flatten(a)
return a
def _tf_batch_map_coordinates(self, inputs, coords):
"""Batch version of tf_map_coordinates
Only supports 2D feature maps
Parameters
----------
inputs : ``tl.Tensor``
shape = (b*c, h, w)
coords : ``tl.Tensor``
shape = (b*c, h, w, n, 2)
Returns
-------
``tl.Tensor``
A Tensor with the shape as (b*c, h, w, n)
"""
inputs_shape = inputs.get_shape()
coords_shape = coords.get_shape()
batch_channel = tl.get_tensor_shape(inputs)[0]
input_h = int(inputs_shape[1])
input_w = int(inputs_shape[2])
kernel_n = int(coords_shape[3])
n_coords = input_h * input_w * kernel_n
coords_lt = tl.ops.cast(tl.ops.Floor()(coords), 'int32')
coords_rb = tl.ops.cast(tl.ops.Ceil()(coords), 'int32')
coords_lb = tl.ops.stack([coords_lt[:, :, :, :, 0], coords_rb[:, :, :, :, 1]], axis=-1)
coords_rt = tl.ops.stack([coords_rb[:, :, :, :, 0], coords_lt[:, :, :, :, 1]], axis=-1)
idx = self._tf_repeat(tl.ops.range(batch_channel), n_coords)
vals_lt = self._get_vals_by_coords(inputs, coords_lt, idx, (batch_channel, input_h, input_w, kernel_n))
vals_rb = self._get_vals_by_coords(inputs, coords_rb, idx, (batch_channel, input_h, input_w, kernel_n))
vals_lb = self._get_vals_by_coords(inputs, coords_lb, idx, (batch_channel, input_h, input_w, kernel_n))
vals_rt = self._get_vals_by_coords(inputs, coords_rt, idx, (batch_channel, input_h, input_w, kernel_n))
coords_offset_lt = coords - tl.ops.cast(coords_lt, 'float32')
vals_t = vals_lt + (vals_rt - vals_lt) * coords_offset_lt[:, :, :, :, 0]
vals_b = vals_lb + (vals_rb - vals_lb) * coords_offset_lt[:, :, :, :, 0]
mapped_vals = vals_t + (vals_b - vals_t) * coords_offset_lt[:, :, :, :, 1]
return mapped_vals
def _tf_batch_map_offsets(self, inputs, offsets, grid_offset):
"""Batch map offsets into input
Parameters
------------
inputs : ``tl.Tensor``
shape = (b, h, w, c)
offsets: ``tl.Tensor``
shape = (b, h, w, 2*n)
grid_offset: `tl.Tensor``
Offset grids shape = (h, w, n, 2)
Returns
-------
``tl.Tensor``
A Tensor with the shape as (b, h, w, c)
"""
inputs_shape = inputs.get_shape()
batch_size = tl.get_tensor_shape(inputs)[0]
kernel_n = int(int(offsets.get_shape()[3]) / 2)
input_h = inputs_shape[1]
input_w = inputs_shape[2]
channel = inputs_shape[3]
# inputs (b, h, w, c) --> (b*c, h, w)
inputs = self._to_bc_h_w(inputs, inputs_shape)
# offsets (b, h, w, 2*n) --> (b, h, w, n, 2)
offsets = tl.ops.reshape(offsets, (batch_size, input_h, input_w, kernel_n, 2))
coords = tl.ops.expand_dims(grid_offset, 0) # grid_offset --> (1, h, w, n, 2)
coords = tl.ops.tile(coords, [batch_size, 1, 1, 1, 1]) + offsets # grid_offset --> (b, h, w, n, 2)
# clip out of bound
coords = tl.ops.stack(
[
tl.ops.clip_by_value(coords[:, :, :, :, 0], 0.0, tl.ops.cast(input_h - 1, 'float32')),
tl.ops.clip_by_value(coords[:, :, :, :, 1], 0.0, tl.ops.cast(input_w - 1, 'float32'))
], axis=-1
)
coords = tl.ops.tile(coords, [channel, 1, 1, 1, 1])
mapped_vals = self._tf_batch_map_coordinates(inputs, coords)
# (b*c, h, w, n) --> (b, h, w, n, c)
mapped_vals = self._to_b_h_w_n_c(mapped_vals, [batch_size, input_h, input_w, kernel_n, channel])
return mapped_vals