forked from TensorLayer/tensorlayer3
84 lines
1.7 KiB
Python
84 lines
1.7 KiB
Python
#! /usr/bin/python
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
TensorLayer provides rich layer implementations trailed for
|
|
various benchmarks and domain-specific problems. In addition, we also
|
|
support transparent access to native TensorFlow parameters.
|
|
For example, we provide not only layers for local response normalization, but also
|
|
layers that allow user to apply ``tf.ops.lrn`` on ``network.outputs``.
|
|
More functions can be found in `TensorFlow API <https://www.tensorflow.org/versions/master/api_docs/index.html>`__.
|
|
"""
|
|
|
|
from .binary_conv import *
|
|
from .deformable_conv import *
|
|
from .depthwise_conv import *
|
|
from .dorefa_conv import *
|
|
# from .expert_conv import *
|
|
# from .expert_deconv import *
|
|
from .group_conv import *
|
|
from .quan_conv import *
|
|
from .quan_conv_bn import *
|
|
from .separable_conv import *
|
|
from .simplified_conv import *
|
|
# from .simplified_deconv import *
|
|
from .super_resolution import *
|
|
from .ternary_conv import *
|
|
|
|
__all__ = [
|
|
|
|
# simplified conv
|
|
'Conv1d',
|
|
'Conv2d',
|
|
'Conv3d',
|
|
|
|
# simplified deconv
|
|
'DeConv1d',
|
|
'DeConv2d',
|
|
'DeConv3d',
|
|
|
|
# expert conv
|
|
# 'Conv1dLayer',
|
|
# 'Conv2dLayer',
|
|
# 'Conv3dLayer',
|
|
|
|
# expert conv
|
|
# 'DeConv1dLayer',
|
|
# 'DeConv2dLayer',
|
|
# 'DeConv3dLayer',
|
|
|
|
# atrous
|
|
# 'AtrousConv1dLayer',
|
|
# 'AtrousConv2dLayer',
|
|
# 'AtrousDeConv2d',
|
|
|
|
# binary
|
|
'BinaryConv2d',
|
|
|
|
# deformable
|
|
'DeformableConv2d',
|
|
|
|
# depthwise
|
|
'DepthwiseConv2d',
|
|
|
|
# dorefa
|
|
'DorefaConv2d',
|
|
|
|
# group
|
|
'GroupConv2d',
|
|
|
|
# separable
|
|
'SeparableConv1d',
|
|
'SeparableConv2d',
|
|
|
|
# subpixel
|
|
'SubpixelConv1d',
|
|
'SubpixelConv2d',
|
|
|
|
# ternary
|
|
'TernaryConv2d',
|
|
|
|
#quan_conv
|
|
'QuanConv2d',
|
|
'QuanConv2dWithBN',
|
|
]
|