tensorlayer3/tensorlayer/cost/paddle_cost.py

604 lines
21 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#! /usr/bin/python
# -*- coding: utf-8 -*-
import paddle.nn.functional as F
import paddle as pd
__all__ = [
'softmax_cross_entropy_with_logits',
'sigmoid_cross_entropy',
'binary_cross_entropy',
'mean_squared_error',
'normalized_mean_square_error',
'absolute_difference_error',
'dice_coe',
'dice_hard_coe',
'iou_coe',
'cross_entropy_seq',
'cross_entropy_seq_with_mask',
'cosine_similarity',
'li_regularizer',
'lo_regularizer',
'maxnorm_regularizer',
'maxnorm_o_regularizer',
'maxnorm_i_regularizer',
]
def softmax_cross_entropy_with_logits(output, target):
"""Softmax cross-entropy operation, returns the TensorFlow expression of cross-entropy for two distributions,
it implements softmax internally. See ``tf.ops.sparse_softmax_cross_entropy_with_logits``.
Parameters
----------
output : Tensor
A batch of distribution with shape: [batch_size, num of classes].
target : Tensor
A batch of index with shape: [batch_size, ].
name : string
Name of this loss.
Examples
--------
>>> import tensorlayer as tl
>>> ce = tl.cost.softmax_cross_entropy_with_logits(y_logits, y_target_logits)
References
-----------
- About cross-entropy: `<https://en.wikipedia.org/wiki/Cross_entropy>`__.
- The code is borrowed from: `<https://en.wikipedia.org/wiki/Cross_entropy>`__.
"""
return F.cross_entropy(input=output, label=target)
def sigmoid_cross_entropy(output, target):
"""Sigmoid cross-entropy operation, see ``tf.ops.sigmoid_cross_entropy_with_logits``.
Parameters
----------
output : Tensor
A batch of distribution with shape: [batch_size, num of classes].
target : Tensor
A batch of index with shape: [batch_size, ].
name : string
Name of this loss.
"""
if output.shape[-1] == target.shape[-1]:
pass
else:
depth = output.shape[-1]
target = pd.fluid.layers.one_hot(target, depth=depth)
out = pd.fluid.layers.sigmoid_cross_entropy_with_logits(x=output, label=target)
out = pd.fluid.layers.reduce_mean(out)
return out
def binary_cross_entropy(output, target, epsilon=1e-8):
"""Binary cross entropy operation.
Parameters
----------
output : Tensor
Tensor with type of `float32` or `float64`.
target : Tensor
The target distribution, format the same with `output`.
epsilon : float
A small value to avoid output to be zero.
name : str
An optional name to attach to this function.
References
-----------
- `ericjang-DRAW <https://github.com/ericjang/draw/blob/master/draw.py#L73>`__
"""
if output.shape[-1] == target.shape[-1]:
pass
else:
depth = output.shape[-1]
target = pd.fluid.layers.one_hot(target, depth=depth)
out = pd.fluid.layers.reduce_sum(
-(target * pd.log(output + epsilon) + (1. - target) * pd.log(1. - output + epsilon))
)
return out
def mean_squared_error(output, target, is_mean=False, axis=-1, name="mean_squared_error"):
"""Return the TensorFlow expression of mean-square-error (L2) of two batch of data.
Parameters
----------
output : Tensor
2D, 3D or 4D tensor i.e. [batch_size, n_feature], [batch_size, height, width] or [batch_size, height, width, channel].
target : Tensor
The target distribution, format the same with `output`.
is_mean : boolean
Whether compute the mean or sum for each example.
- If True, use ``tf.reduce_mean`` to compute the loss between one target and predict data.
- If False, use ``tf.reduce_sum`` (default).
axis : int or list of int
The dimensions to reduce.
name : str
An optional name to attach to this function.
References
------------
- `Wiki Mean Squared Error <https://en.wikipedia.org/wiki/Mean_squared_error>`__
"""
if output.shape[-1] == target.shape[-1]:
pass
else:
depth = output.shape[-1]
target = pd.fluid.layers.one_hot(target, depth=depth)
if is_mean:
mse = F.mse_loss(input=output, label=target, reduction='mean')
else:
mse = F.mse_loss(input=output, label=target, reduction='sum')
return mse
def normalized_mean_square_error(output, target, axis=-1, name="normalized_mean_squared_error_loss"):
"""Return the TensorFlow expression of normalized mean-square-error of two distributions.
Parameters
----------
output : Tensor
2D, 3D or 4D tensor i.e. [batch_size, n_feature], [batch_size, height, width] or [batch_size, height, width, channel].
target : Tensor
The target distribution, format the same with `output`.
axis : int or list of int
The dimensions to reduce.
name : str
An optional name to attach to this function.
"""
if output.shape[-1] == target.shape[-1]:
pass
else:
depth = output.shape[-1]
target = pd.fluid.layers.one_hot(target, depth=depth)
nmse_a = pd.sqrt(pd.fluid.layers.reduce_sum(pd.fluid.layers.square_error_cost(output, target), dim=axis))
nmse_b = pd.sqrt(pd.fluid.layers.reduce_sum(pd.square(target), dim=axis))
nmse = pd.fluid.layers.reduce_mean(nmse_a / nmse_b)
return nmse
def absolute_difference_error(output, target, is_mean=False, axis=-1, name="absolute_difference_error_loss"):
"""Return the TensorFlow expression of absolute difference error (L1) of two batch of data.
Parameters
----------
output : Tensor
2D, 3D or 4D tensor i.e. [batch_size, n_feature], [batch_size, height, width] or [batch_size, height, width, channel].
target : Tensor
The target distribution, format the same with `output`.
is_mean : boolean
Whether compute the mean or sum for each example.
- If True, use ``tf.reduce_mean`` to compute the loss between one target and predict data.
- If False, use ``tf.reduce_sum`` (default).
axis : int or list of int
The dimensions to reduce.
name : str
An optional name to attach to this function.
"""
if is_mean:
loss = pd.fluid.layers.reduce_mean(pd.fluid.layers.reduce_mean(pd.abs(output - target), axis))
else:
loss = pd.fluid.layers.reduce_mean(pd.fluid.layers.reduce_sum(pd.abs(output - target), axis))
return loss
def dice_coe(output, target, loss_type='jaccard', axis=(1, 2, 3), smooth=1e-5):
"""Soft dice (Sørensen or Jaccard) coefficient for comparing the similarity
of two batch of data, usually be used for binary image segmentation
i.e. labels are binary. The coefficient between 0 to 1, 1 means totally match.
Parameters
-----------
output : Tensor
A distribution with shape: [batch_size, ....], (any dimensions).
target : Tensor
The target distribution, format the same with `output`.
loss_type : str
``jaccard`` or ``sorensen``, default is ``jaccard``.
axis : tuple of int
All dimensions are reduced, default ``[1,2,3]``.
smooth : float
This small value will be added to the numerator and denominator.
- If both output and target are empty, it makes sure dice is 1.
- If either output or target are empty (all pixels are background), dice = ```smooth/(small_value + smooth)``, then if smooth is very small, dice close to 0 (even the image values lower than the threshold), so in this case, higher smooth can have a higher dice.
Examples
---------
>>> import tensorlayer as tl
>>> outputs = tl.act.pixel_wise_softmax(outputs)
>>> dice_loss = 1 - tl.cost.dice_coe(outputs, y_)
References
-----------
- `Wiki-Dice <https://en.wikipedia.org/wiki/SørensenDice_coefficient>`__
"""
axis = list(axis)
inse = pd.fluid.layers.reduce_sum(output * target, dim=axis)
if loss_type == 'jaccard':
l = pd.fluid.layers.reduce_sum(output * output, dim=axis)
r = pd.fluid.layers.reduce_sum(target * target, dim=axis)
elif loss_type == 'sorensen':
l = pd.fluid.layers.reduce_sum(output, dim=axis)
r = pd.fluid.layers.reduce_sum(target, dim=axis)
else:
raise Exception("Unknow loss_type")
dice = (2. * inse + smooth) / (l + r + smooth)
dice = pd.fluid.layers.reduce_mean(dice)
return dice
def dice_hard_coe(output, target, threshold=0.5, axis=(1, 2, 3), smooth=1e-5):
"""Non-differentiable SørensenDice coefficient for comparing the similarity
of two batch of data, usually be used for binary image segmentation i.e. labels are binary.
The coefficient between 0 to 1, 1 if totally match.
Parameters
-----------
output : tensor
A distribution with shape: [batch_size, ....], (any dimensions).
target : tensor
The target distribution, format the same with `output`.
threshold : float
The threshold value to be true.
axis : tuple of integer
All dimensions are reduced, default ``(1,2,3)``.
smooth : float
This small value will be added to the numerator and denominator, see ``dice_coe``.
References
-----------
- `Wiki-Dice <https://en.wikipedia.org/wiki/SørensenDice_coefficient>`__
"""
output = pd.cast(output > threshold, dtype='float32')
target = pd.cast(target > threshold, dtype='float32')
inse = pd.fluid.layers.reduce_sum(pd.multiply(output, target), dim=list(axis))
l = pd.fluid.layers.reduce_sum(output, dim=list(axis))
r = pd.fluid.layers.reduce_sum(target, dim=list(axis))
hard_dice = (2. * inse + smooth) / (l + r + smooth)
##
hard_dice = pd.fluid.layers.reduce_mean(hard_dice)
return hard_dice
def iou_coe(output, target, threshold=0.5, axis=(1, 2, 3), smooth=1e-5):
"""Non-differentiable Intersection over Union (IoU) for comparing the
similarity of two batch of data, usually be used for evaluating binary image segmentation.
The coefficient between 0 to 1, and 1 means totally match.
Parameters
-----------
output : tensor
A batch of distribution with shape: [batch_size, ....], (any dimensions).
target : tensor
The target distribution, format the same with `output`.
threshold : float
The threshold value to be true.
axis : tuple of integer
All dimensions are reduced, default ``(1,2,3)``.
smooth : float
This small value will be added to the numerator and denominator, see ``dice_coe``.
Notes
------
- IoU cannot be used as training loss, people usually use dice coefficient for training, IoU and hard-dice for evaluating.
"""
pre = pd.cast(output > threshold, dtype='float32')
truth = pd.cast(target > threshold, dtype='float32')
inse = pd.fluid.layers.reduce_sum(pd.multiply(pre, truth), dim=axis) # AND
union = pd.fluid.layers.reduce_sum(pd.cast(pd.add(pre, truth) >= 1, dtype='float32'), dim=axis) # OR
batch_iou = (inse + smooth) / (union + smooth)
iou = pd.fluid.layers.reduce_mean(batch_iou, name='iou_coe')
return iou
def sequence_loss_by_example(
logits, targets, weights, average_across_timesteps=True, softmax_loss_function=None, name=None
):
"""Weighted cross-entropy loss for a sequence of logits (per example). see original tensorflow code :
<https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/legacy_seq2seq/python/ops/seq2seq.py#L1057>
Parameters
----------
logits: List
List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List
List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List
List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: Boolean
If set, divide the returned cost by the total label weight.
softmax_loss_function: None or Function
Function (labels, logits) -> loss-batch to be used instead of the standard softmax (the default if this is None).
**Note that to avoid confusion, it is required for the function to accept named arguments.**
name: None or str
Optional name for this operation, default: "sequence_loss_by_example".
Returns
-------
1D batch-sized float Tensor: The log-perplexity for each sequence.
Raises
------
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
raise NotImplementedError("Not Implemented.")
def cross_entropy_seq(logits, target_seqs, batch_size=None):
"""Returns the expression of cross-entropy of two sequences, implement
softmax internally. Normally be used for fixed length RNN outputs, see `PTB example <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_ptb_lstm.py>`__.
Parameters
----------
logits : Tensor
2D tensor with shape of `[batch_size * n_steps, n_classes]`.
target_seqs : Tensor
The target sequence, 2D tensor `[batch_size, n_steps]`, if the number of step is dynamic, please use ``tl.cost.cross_entropy_seq_with_mask`` instead.
batch_size : None or int.
Whether to divide the cost by batch size.
- If integer, the return cost will be divided by `batch_size`.
- If None (default), the return cost will not be divided by anything.
Examples
--------
>>> import tensorlayer as tl
>>> # see `PTB example <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_ptb_lstm.py>`__.for more details
>>> # outputs shape : (batch_size * n_steps, n_classes)
>>> # targets shape : (batch_size, n_steps)
>>> cost = tl.cost.cross_entropy_seq(outputs, targets)
"""
raise NotImplementedError("Not Implemented.")
def cross_entropy_seq_with_mask(logits, target_seqs, input_mask, return_details=False, name=None):
"""Returns the expression of cross-entropy of two sequences, implement
softmax internally. Normally be used for Dynamic RNN with Synced sequence input and output.
Parameters
-----------
logits : Tensor
2D tensor with shape of [batch_size * ?, n_classes], `?` means dynamic IDs for each example.
- Can be get from `DynamicRNNLayer` by setting ``return_seq_2d`` to `True`.
target_seqs : Tensor
int of tensor, like word ID. [batch_size, ?], `?` means dynamic IDs for each example.
input_mask : Tensor
The mask to compute loss, it has the same size with `target_seqs`, normally 0 or 1.
return_details : boolean
Whether to return detailed losses.
- If False (default), only returns the loss.
- If True, returns the loss, losses, weights and targets (see source code).
Examples
--------
>>> import tensorlayer as tl
>>> import tensorflow as tf
>>> import numpy as np
>>> batch_size = 64
>>> vocab_size = 10000
>>> embedding_size = 256
>>> ni = tl.layers.Input([batch_size, None], dtype=tf.int64)
>>> net = tl.layers.Embedding(
... vocabulary_size = vocab_size,
... embedding_size = embedding_size,
... name = 'seq_embedding')(ni)
>>> net = tl.layers.RNN(
... cell =tf.keras.layers.LSTMCell(units=embedding_size, dropout=0.1),
... return_seq_2d = True,
... name = 'dynamicrnn')(net)
>>> net = tl.layers.Dense(n_units=vocab_size, name="output")(net)
>>> model = tl.models.Model(inputs=ni, outputs=net)
>>> input_seqs = np.random.randint(0, 10, size=(batch_size, 10), dtype=np.int64)
>>> target_seqs = np.random.randint(0, 10, size=(batch_size, 10), dtype=np.int64)
>>> input_mask = np.random.randint(0, 2, size=(batch_size, 10), dtype=np.int64)
>>> outputs = model(input_seqs, is_train=True)
>>> loss = tl.cost.cross_entropy_seq_with_mask(outputs, target_seqs, input_mask)
"""
raise NotImplementedError("Not Implemented.")
def cosine_similarity(v1, v2):
"""Cosine similarity [-1, 1].
Parameters
----------
v1, v2 : Tensor
Tensor with the same shape [batch_size, n_feature].
References
----------
- `Wiki <https://en.wikipedia.org/wiki/Cosine_similarity>`__.
"""
return pd.fluid.layers.reduce_sum(pd.multiply(v1, v2), 1) / \
(pd.sqrt(pd.fluid.layers.reduce_sum(pd.multiply(v1, v1), 1)) *
pd.sqrt(pd.fluid.layers.reduce_sum(pd.multiply(v2, v2), 1)))
# Regularization Functions
def li_regularizer(scale, scope=None):
"""Li regularization removes the neurons of previous layer. The `i` represents `inputs`.
Returns a function that can be used to apply group li regularization to weights.
The implementation follows `TensorFlow contrib <https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/regularizers.py>`__.
Parameters
----------
scale : float
A scalar multiplier `Tensor`. 0.0 disables the regularizer.
scope: str
An optional scope name for this function.
Returns
--------
A function with signature `li(weights, name=None)` that apply Li regularization.
Raises
------
ValueError : if scale is outside of the range [0.0, 1.0] or if scale is not a float.
"""
raise NotImplementedError("Not Implemented.")
def lo_regularizer(scale):
"""Lo regularization removes the neurons of current layer. The `o` represents `outputs`
Returns a function that can be used to apply group lo regularization to weights.
The implementation follows `TensorFlow contrib <https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/regularizers.py>`__.
Parameters
----------
scale : float
A scalar multiplier `Tensor`. 0.0 disables the regularizer.
Returns
-------
A function with signature `lo(weights, name=None)` that apply Lo regularization.
Raises
------
ValueError : If scale is outside of the range [0.0, 1.0] or if scale is not a float.
"""
raise NotImplementedError("Not Implemented.")
def maxnorm_regularizer(scale=1.0):
"""Max-norm regularization returns a function that can be used to apply max-norm regularization to weights.
More about max-norm, see `wiki-max norm <https://en.wikipedia.org/wiki/Matrix_norm#Max_norm>`_.
The implementation follows `TensorFlow contrib <https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/regularizers.py>`__.
Parameters
----------
scale : float
A scalar multiplier `Tensor`. 0.0 disables the regularizer.
Returns
---------
A function with signature `mn(weights, name=None)` that apply Lo regularization.
Raises
--------
ValueError : If scale is outside of the range [0.0, 1.0] or if scale is not a float.
"""
raise NotImplementedError("Not Implemented.")
def maxnorm_o_regularizer(scale):
"""Max-norm output regularization removes the neurons of current layer.
Returns a function that can be used to apply max-norm regularization to each column of weight matrix.
The implementation follows `TensorFlow contrib <https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/regularizers.py>`__.
Parameters
----------
scale : float
A scalar multiplier `Tensor`. 0.0 disables the regularizer.
Returns
---------
A function with signature `mn_o(weights, name=None)` that apply Lo regularization.
Raises
---------
ValueError : If scale is outside of the range [0.0, 1.0] or if scale is not a float.
"""
raise NotImplementedError("Not Implemented.")
def maxnorm_i_regularizer(scale):
"""Max-norm input regularization removes the neurons of previous layer.
Returns a function that can be used to apply max-norm regularization to each row of weight matrix.
The implementation follows `TensorFlow contrib <https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/regularizers.py>`__.
Parameters
----------
scale : float
A scalar multiplier `Tensor`. 0.0 disables the regularizer.
Returns
---------
A function with signature `mn_i(weights, name=None)` that apply Lo regularization.
Raises
---------
ValueError : If scale is outside of the range [0.0, 1.0] or if scale is not a float.
"""
raise NotImplementedError("Not Implemented.")
def huber_loss(
output, target, is_mean=True, delta=1.0, dynamichuber=False, reverse=False, axis=-1, epsilon=0.00001, name=None
):
"""Huber Loss operation, see ``https://en.wikipedia.org/wiki/Huber_loss`` .
Reverse Huber Loss operation, see ''https://statweb.stanford.edu/~owen/reports/hhu.pdf''.
Dynamic Reverse Huber Loss operation, see ''https://arxiv.org/pdf/1606.00373.pdf''.
Parameters
----------
output : Tensor
A distribution with shape: [batch_size, ....], (any dimensions).
target : Tensor
The target distribution, format the same with `output`.
is_mean : boolean
Whether compute the mean or sum for each example.
- If True, use ``tf.reduce_mean`` to compute the loss between one target and predict data (default).
- If False, use ``tf.reduce_sum``.
delta: float
The point where the huber loss function changes from a quadratic to linear.
dynamichuber: boolean
Whether compute the coefficient c for each batch.
- If True, c is 20% of the maximal per-batch error.
- If False, c is delta.
reverse: boolean
Whether compute the reverse huber loss.
axis : int or list of int
The dimensions to reduce.
epsilon:
Eplison.
name : string
Name of this loss.
"""
raise NotImplementedError("Not Implemented.")