tensorlayer3/examples/basic_tutorials/tutorial_dataflow.py

85 lines
2.3 KiB
Python

#! /usr/bin/python
# -*- coding: utf-8 -*-
import os
os.environ['TL_BACKEND'] = 'tensorflow'
# os.environ['TL_BACKEND'] = 'mindspore'
# os.environ['TL_BACKEND'] = 'paddle'
import tensorlayer as tl
from tensorlayer.layers import Module
from tensorlayer.layers import Dense, Flatten
from tensorlayer.vision.transforms import Normalize, Compose
from tensorlayer.dataflow import Dataset, IterableDataset
transform = Compose([Normalize(mean=[127.5], std=[127.5], data_format='HWC')])
print('download training data and load training data')
X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_mnist_dataset(shape=(-1, 28, 28, 1))
X_train = X_train * 255
print('load finished')
class mnistdataset(Dataset):
def __init__(self, data=X_train, label=y_train, transform=transform):
self.data = data
self.label = label
self.transform = transform
def __getitem__(self, index):
data = self.data[index].astype('float32')
data = self.transform(data)
label = self.label[index].astype('int64')
return data, label
def __len__(self):
return len(self.data)
class mnistdataset1(IterableDataset):
def __init__(self, data=X_train, label=y_train, transform=transform):
self.data = data
self.label = label
self.transform = transform
def __iter__(self):
for i in range(len(self.data)):
data = self.data[i].astype('float32')
data = self.transform(data)
label = self.label[i].astype('int64')
yield data, label
class MLP(Module):
def __init__(self):
super(MLP, self).__init__()
self.linear1 = Dense(n_units=120, in_channels=784, act=tl.ReLU)
self.linear2 = Dense(n_units=84, in_channels=120, act=tl.ReLU)
self.linear3 = Dense(n_units=10, in_channels=84)
self.flatten = Flatten()
def forward(self, x):
x = self.flatten(x)
x = self.linear1(x)
x = self.linear2(x)
x = self.linear3(x)
return x
train_dataset = mnistdataset1(data=X_train, label=y_train, transform=transform)
train_dataset = tl.dataflow.FromGenerator(
train_dataset, output_types=[tl.float32, tl.int64], column_names=['data', 'label']
)
train_loader = tl.dataflow.Dataloader(train_dataset, batch_size=128, shuffle=False)
for i in train_loader:
print(i[0].shape, i[1])