tensorlayer3/get_gt_txt

50 lines
1.8 KiB
Plaintext

#----------------------------------------------------#
# 获取测试集的ground-truth
#----------------------------------------------------#
import glob
import os
import sys
import xml.etree.ElementTree as ET
#---------------------------------------------------#
# 获得类
#---------------------------------------------------#
def get_classes(classes_path):
'''loads the classes'''
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
image_ids = open('VOCdevkit/VOC2007/ImageSets/Main/test.txt').read().strip().split()
if not os.path.exists("./input"):
os.makedirs("./input")
if not os.path.exists("./input/ground-truth"):
os.makedirs("./input/ground-truth")
for image_id in image_ids:
with open("./input/ground-truth/"+image_id+".txt", "w") as new_f:
root = ET.parse("VOCdevkit/VOC2007/Annotations/"+image_id+".xml").getroot()
for obj in root.findall('object'):
difficult_flag = False
if obj.find('difficult')!=None:
difficult = obj.find('difficult').text
if int(difficult)==1:
difficult_flag = True
obj_name = obj.find('name').text
bndbox = obj.find('bndbox')
left = bndbox.find('xmin').text
top = bndbox.find('ymin').text
right = bndbox.find('xmax').text
bottom = bndbox.find('ymax').text
if difficult_flag:
new_f.write("%s %s %s %s %s difficult\n" % (obj_name, left, top, right, bottom))
else:
new_f.write("%s %s %s %s %s\n" % (obj_name, left, top, right, bottom))
print("Conversion completed!")