forked from TensorLayer/tensorlayer3
124 lines
5.4 KiB
Plaintext
124 lines
5.4 KiB
Plaintext
|
||
import os
|
||
|
||
import numpy as np
|
||
import tensorflow as tf
|
||
from PIL import Image
|
||
|
||
from tqdm import tqdm
|
||
|
||
from frcnn import FRCNN
|
||
from nets.frcnn_training import get_new_img_size
|
||
from utils.anchors import get_anchors
|
||
|
||
'''
|
||
这里设置的门限值较低是因为计算map需要用到不同门限条件下的Recall和Precision值。
|
||
所以只有保留的框足够多,计算的map才会更精确,详情可以了解map的原理。
|
||
计算map时输出的Recall和Precision值指的是门限为0.5时的Recall和Precision值。
|
||
|
||
此处获得的./input/detection-results/里面的txt的框的数量会比直接predict多一些,这是因为这里的门限低,
|
||
目的是为了计算不同门限条件下的Recall和Precision值,从而实现map的计算。
|
||
|
||
这里的self.iou指的是非极大抑制所用到的iou,具体的可以了解非极大抑制的原理,
|
||
如果低分框与高分框的iou大于这里设定的self.iou,那么该低分框将会被剔除。
|
||
|
||
可能有些同学知道有0.5和0.5:0.95的mAP,这里的self.iou=0.5不代表mAP0.5。
|
||
如果想要设定mAP0.x,比如设定mAP0.75,可以去get_map.py设定MINOVERLAP。
|
||
'''
|
||
gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
|
||
for gpu in gpus:
|
||
tf.config.experimental.set_memory_growth(gpu, True)
|
||
|
||
|
||
class mAP_FRCNN(FRCNN):
|
||
# ---------------------------------------------------#
|
||
# 检测图片
|
||
# ---------------------------------------------------#
|
||
|
||
def detect_image(self, image_id, image):
|
||
self.confidence = 0.01
|
||
f = open("./input/detection-results/" + image_id + ".txt", "w")
|
||
# -------------------------------------#
|
||
# 转换成RGB图片,可以用于灰度图预测。
|
||
# -------------------------------------#
|
||
image = image.convert("RGB")
|
||
|
||
image_shape = np.array(np.shape(image)[0:2])
|
||
old_width, old_height = image_shape[1], image_shape[0]
|
||
|
||
# ---------------------------------------------------------#
|
||
# 给原图像进行resize,resize到短边为600的大小上
|
||
# ---------------------------------------------------------#
|
||
width, height = get_new_img_size(old_width, old_height)
|
||
image = image.resize([width, height], Image.BICUBIC)
|
||
photo = np.array(image, dtype=np.float64)
|
||
|
||
# -----------------------------------------------------------#
|
||
# 图片预处理,归一化。
|
||
# -----------------------------------------------------------#
|
||
photo = np.expand_dims(photo, 0)
|
||
rpn_pred = self.model_rpn_get_pred(photo)
|
||
rpn_pred = [x.numpy() for x in rpn_pred]
|
||
|
||
# -----------------------------------------------------------#
|
||
# 将建议框网络的预测结果进行解码
|
||
# -----------------------------------------------------------#
|
||
base_feature_width, base_feature_height = self.get_img_output_length(width, height)
|
||
anchors = get_anchors([base_feature_width, base_feature_height], width, height)
|
||
rpn_results = self.bbox_util.detection_out_rpn(rpn_pred, anchors)
|
||
|
||
# -------------------------------------------------------------#
|
||
# 在获得建议框和共享特征层后,将二者传入classifier中进行预测
|
||
# -------------------------------------------------------------#
|
||
base_layer = rpn_pred[2]
|
||
proposal_box = np.array(rpn_results)[:, :, 1:]
|
||
temp_ROIs = np.zeros_like(proposal_box)
|
||
temp_ROIs[:, :, [0, 1, 2, 3]] = proposal_box[:, :, [1, 0, 3, 2]]
|
||
classifier_pred = self.model_classifier_get_pred([base_layer, temp_ROIs])
|
||
classifier_pred = [x.numpy() for x in classifier_pred]
|
||
|
||
# -------------------------------------------------------------#
|
||
# 利用classifier的预测结果对建议框进行解码,获得预测框
|
||
# -------------------------------------------------------------#
|
||
results = self.bbox_util.detection_out_classifier(classifier_pred, proposal_box, self.config, self.confidence)
|
||
|
||
if len(results[0]) == 0:
|
||
return
|
||
|
||
results = np.array(results[0])
|
||
boxes = results[:, :4]
|
||
top_conf = results[:, 4]
|
||
top_label_indices = results[:, 5]
|
||
boxes[:, [0, 2]] = boxes[:, [0, 2]] * old_width
|
||
boxes[:, [1, 3]] = boxes[:, [1, 3]] * old_height
|
||
|
||
for i, c in enumerate(top_label_indices):
|
||
predicted_class = self.class_names[int(c)]
|
||
score = str(top_conf[i])
|
||
|
||
left, top, right, bottom = boxes[i]
|
||
f.write("%s %s %s %s %s %s\n" % (
|
||
predicted_class, score[:6], str(int(left)), str(int(top)), str(int(right)), str(int(bottom))))
|
||
|
||
f.close()
|
||
return
|
||
|
||
|
||
frcnn = mAP_FRCNN()
|
||
image_ids = open('VOCdevkit/VOC2007/ImageSets/Main/test.txt').read().strip().split()
|
||
|
||
if not os.path.exists("./input"):
|
||
os.makedirs("./input")
|
||
if not os.path.exists("./input/detection-results"):
|
||
os.makedirs("./input/detection-results")
|
||
if not os.path.exists("./input/images-optional"):
|
||
os.makedirs("./input/images-optional")
|
||
|
||
for image_id in tqdm(image_ids):
|
||
image_path = "./VOCdevkit/VOC2007/JPEGImages/" + image_id + ".jpg"
|
||
image = Image.open(image_path)
|
||
# image.save("./input/images-optional/"+image_id+".jpg")
|
||
frcnn.detect_image(image_id, image)
|
||
|
||
print("Conversion completed!")
|