tensorlayer3/tensorlayer/layers/spatial_transformer.py

281 lines
10 KiB
Python

#! /usr/bin/python
# -*- coding: utf-8 -*-
import numpy as np
from six.moves import xrange
import tensorlayer as tl
from tensorlayer import logging
from tensorlayer.layers.core import Module
__all__ = [
'transformer',
'batch_transformer',
'SpatialTransformer2dAffine',
]
def transformer(U, theta, out_size, name='SpatialTransformer2dAffine'):
"""Spatial Transformer Layer for `2D Affine Transformation <https://en.wikipedia.org/wiki/Affine_transformation>`__
, see :class:`SpatialTransformer2dAffine` class.
Parameters
----------
U : list of float
The output of a convolutional net should have the
shape [num_batch, height, width, num_channels].
theta: float
The output of the localisation network should be [num_batch, 6], value range should be [0, 1] (via tanh).
out_size: tuple of int
The size of the output of the network (height, width)
name: str
Optional function name
Returns
-------
Tensor
The transformed tensor.
References
----------
- `Spatial Transformer Networks <https://arxiv.org/abs/1506.02025>`__
- `TensorFlow/Models <https://github.com/tensorflow/models/tree/master/transformer>`__
Notes
-----
To initialize the network to the identity transform init.
>>> import tensorflow as tf
>>> # ``theta`` to
>>> identity = np.array([[1., 0., 0.], [0., 1., 0.]])
>>> identity = identity.flatten()
>>> theta = tf.Variable(initial_value=identity)
"""
def _repeat(x, n_repeats):
rep = tl.transpose(a=tl.expand_dims(tl.ones(shape=tl.stack([
n_repeats,
])), axis=1), perm=[1, 0])
rep = tl.cast(rep, 'int32')
x = tl.matmul(tl.reshape(x, (-1, 1)), rep)
return tl.reshape(x, [-1])
def _interpolate(im, x, y, out_size):
# constants
num_batch, height, width, channels = tl.get_tensor_shape(im)
x = tl.cast(x, 'float32')
y = tl.cast(y, 'float32')
height_f = tl.cast(height, 'float32')
width_f = tl.cast(width, 'float32')
out_height = out_size[0]
out_width = out_size[1]
zero = tl.zeros([], dtype='int32')
max_y = tl.cast(height - 1, 'int32')
max_x = tl.cast(width - 1, 'int32')
# scale indices from [-1, 1] to [0, width/height]
x = (x + 1.0) * (width_f) / 2.0
y = (y + 1.0) * (height_f) / 2.0
# do sampling
x0 = tl.cast(tl.floor(x), 'int32')
x1 = x0 + 1
y0 = tl.cast(tl.floor(y), 'int32')
y1 = y0 + 1
x0 = tl.clip_by_value(x0, zero, max_x)
x1 = tl.clip_by_value(x1, zero, max_x)
y0 = tl.clip_by_value(y0, zero, max_y)
y1 = tl.clip_by_value(y1, zero, max_y)
dim2 = width
dim1 = width * height
base = _repeat(tl.range(num_batch) * dim1, out_height * out_width)
base_y0 = base + y0 * dim2
base_y1 = base + y1 * dim2
idx_a = base_y0 + x0
idx_b = base_y1 + x0
idx_c = base_y0 + x1
idx_d = base_y1 + x1
# use indices to lookup pixels in the flat image and restore
# channels dim
im_flat = tl.reshape(im, tl.stack([-1, channels]))
im_flat = tl.cast(im_flat, 'float32')
Ia = tl.gather(im_flat, idx_a)
Ib = tl.gather(im_flat, idx_b)
Ic = tl.gather(im_flat, idx_c)
Id = tl.gather(im_flat, idx_d)
# and finally calculate interpolated values
x0_f = tl.cast(x0, 'float32')
x1_f = tl.cast(x1, 'float32')
y0_f = tl.cast(y0, 'float32')
y1_f = tl.cast(y1, 'float32')
wa = tl.expand_dims(((x1_f - x) * (y1_f - y)), 1)
wb = tl.expand_dims(((x1_f - x) * (y - y0_f)), 1)
wc = tl.expand_dims(((x - x0_f) * (y1_f - y)), 1)
wd = tl.expand_dims(((x - x0_f) * (y - y0_f)), 1)
output = tl.add_n([wa * Ia, wb * Ib, wc * Ic, wd * Id])
return output
def _meshgrid(height, width):
# This should be equivalent to:
# x_t, y_t = np.meshgrid(np.linspace(-1, 1, width),
# np.linspace(-1, 1, height))
# ones = np.ones(np.prod(x_t.shape))
# grid = np.vstack([x_t.flatten(), y_t.flatten(), ones])
x_t = tl.matmul(
tl.ones(shape=tl.stack([height, 1])),
tl.transpose(a=tl.expand_dims(tl.linspace(-1.0, 1.0, width), 1), perm=[1, 0])
)
y_t = tl.matmul(tl.expand_dims(tl.linspace(-1.0, 1.0, height), 1), tl.ones(shape=tl.stack([1, width])))
x_t_flat = tl.reshape(x_t, (1, -1))
y_t_flat = tl.reshape(y_t, (1, -1))
ones = tl.ones(shape=tl.get_tensor_shape(x_t_flat))
grid = tl.concat(axis=0, values=[x_t_flat, y_t_flat, ones])
return grid
def _transform(theta, input_dim, out_size):
num_batch, _, _, num_channels = tl.get_tensor_shape(input_dim)
theta = tl.reshape(theta, (-1, 2, 3))
theta = tl.cast(theta, 'float32')
# grid of (x_t, y_t, 1), eq (1) in ref [1]
out_height = out_size[0]
out_width = out_size[1]
grid = _meshgrid(out_height, out_width)
grid = tl.expand_dims(grid, 0)
grid = tl.reshape(grid, [-1])
grid = tl.tile(grid, tl.stack([num_batch]))
grid = tl.reshape(grid, tl.stack([num_batch, 3, -1]))
# Transform A x (x_t, y_t, 1)^T -> (x_s, y_s)
T_g = tl.matmul(theta, grid)
x_s = tl.slice(T_g, [0, 0, 0], [-1, 1, -1])
y_s = tl.slice(T_g, [0, 1, 0], [-1, 1, -1])
x_s_flat = tl.reshape(x_s, [-1])
y_s_flat = tl.reshape(y_s, [-1])
input_transformed = _interpolate(input_dim, x_s_flat, y_s_flat, out_size)
output = tl.reshape(input_transformed, tl.stack([num_batch, out_height, out_width, num_channels]))
return output
output = _transform(theta, U, out_size)
return output
def batch_transformer(U, thetas, out_size, name='BatchSpatialTransformer2dAffine'):
"""Batch Spatial Transformer function for `2D Affine Transformation <https://en.wikipedia.org/wiki/Affine_transformation>`__.
Parameters
----------
U : list of float
tensor of inputs [batch, height, width, num_channels]
thetas : list of float
a set of transformations for each input [batch, num_transforms, 6]
out_size : list of int
the size of the output [out_height, out_width]
name : str
optional function name
Returns
------
float
Tensor of size [batch * num_transforms, out_height, out_width, num_channels]
"""
# with tf.compat.v1.variable_scope(name):
num_batch, num_transforms = map(int, thetas.get_shape().as_list()[:2])
indices = [[i] * num_transforms for i in xrange(num_batch)]
input_repeated = tl.gather(U, tl.reshape(indices, [-1]))
return transformer(input_repeated, thetas, out_size)
class SpatialTransformer2dAffine(Module):
"""The :class:`SpatialTransformer2dAffine` class is a 2D `Spatial Transformer Layer <https://arxiv.org/abs/1506.02025>`__ for
`2D Affine Transformation <https://en.wikipedia.org/wiki/Affine_transformation>`__.
Parameters
-----------
out_size : tuple of int or None
- The size of the output of the network (height, width), the feature maps will be resized by this.
in_channels : int
The number of in channels.
data_format : str
"channel_last" (NHWC, default) or "channels_first" (NCHW).
name : str
- A unique layer name.
References
-----------
- `Spatial Transformer Networks <https://arxiv.org/abs/1506.02025>`__
- `TensorFlow/Models <https://github.com/tensorflow/models/tree/master/transformer>`__
"""
def __init__(
self,
out_size=(40, 40),
in_channels=None,
data_format='channel_last',
name=None,
):
super(SpatialTransformer2dAffine, self).__init__(name)
self.in_channels = in_channels
self.out_size = out_size
self.data_format = data_format
if self.in_channels is not None:
self.build(self.in_channels)
self._built = True
logging.info("SpatialTransformer2dAffine %s" % self.name)
def __repr__(self):
s = '{classname}(out_size={out_size}, '
if self.in_channels is not None:
s += 'in_channels=\'{in_channels}\''
if self.name is not None:
s += ', name=\'{name}\''
s += ')'
return s.format(classname=self.__class__.__name__, **self.__dict__)
def build(self, inputs_shape):
if self.in_channels is None and len(inputs_shape) != 2:
raise AssertionError("The dimension of theta layer input must be rank 2, please reshape or flatten it")
if self.in_channels:
shape = [self.in_channels, 6]
else:
# self.in_channels = inputs_shape[1] # BUG
# shape = [inputs_shape[1], 6]
self.in_channels = inputs_shape[0][-1] # zsdonghao
shape = [self.in_channels, 6]
self.W = self._get_weights("weights", shape=tuple(shape), init=tl.initializers.Zeros())
identity = np.reshape(np.array([[1, 0, 0], [0, 1, 0]], dtype=np.float32), newshape=(6, ))
self.b = self._get_weights("biases", shape=(6, ), init=tl.initializers.Constant(identity))
def forward(self, inputs):
"""
:param inputs: a tuple (theta_input, U).
- theta_input is of size [batch, in_channels]. We will use a :class:`Dense` to
make the theta size to [batch, 6], value range to [0, 1] (via tanh).
- U is the previous layer, which the affine transformation is applied to.
:return: tensor of size [batch, out_size[0], out_size[1], n_channels] after affine transformation,
n_channels is identical to that of U.
"""
theta_input, U = inputs
theta = tl.tanh(tl.matmul(theta_input, self.W) + self.b)
outputs = transformer(U, theta, out_size=self.out_size)
# automatically set batch_size and channels
# e.g. [?, 40, 40, ?] --> [64, 40, 40, 1] or [64, 20, 20, 4]
batch_size = theta_input.shape[0]
n_channels = U.shape[-1]
if self.data_format == 'channel_last':
outputs = tl.reshape(outputs, shape=[batch_size, self.out_size[0], self.out_size[1], n_channels])
else:
raise Exception("unimplement data_format {}".format(self.data_format))
return outputs