tensorlayer3/tensorlayer/layers/noise.py

81 lines
2.1 KiB
Python

#! /usr/bin/python
# -*- coding: utf-8 -*-
import tensorlayer as tl
from tensorlayer import logging
from tensorlayer.layers.core import Module
__all__ = [
'GaussianNoise',
]
class GaussianNoise(Module):
"""
The :class:`GaussianNoise` class is noise layer that adding noise with
gaussian distribution to the activation.
Parameters
------------
mean : float
The mean. Default is 0.0.
stddev : float
The standard deviation. Default is 1.0.
is_always : boolean
Is True, add noise for train and eval mode. If False, skip this layer in eval mode.
seed : int or None
The seed for random noise.
name : str
A unique layer name.
Examples
--------
With TensorLayer
>>> net = tl.layers.Input([64, 200], name='input')
>>> net = tl.layers.Dense(in_channels=200, n_units=100, act=tl.ReLU, name='dense')(net)
>>> gaussianlayer = tl.layers.GaussianNoise(name='gaussian')(net)
>>> print(gaussianlayer)
>>> output shape : (64, 100)
"""
def __init__(
self,
mean=0.0,
stddev=1.0,
is_always=True,
seed=None,
name=None, # 'gaussian_noise',
):
super().__init__(name)
self.mean = mean
self.stddev = stddev
self.seed = seed
self.is_always = is_always
self.build()
self._built = True
logging.info("GaussianNoise %s: mean: %f stddev: %f" % (self.name, self.mean, self.stddev))
def __repr__(self):
s = '{classname}(mean={mean}, stddev={stddev}'
if self.name is not None:
s += ', name=\'{name}\''
s += ')'
return s.format(classname=self.__class__.__name__, **self.__dict__)
def build(self, inputs=None):
pass
def forward(self, inputs):
if (self.is_train or self.is_always) is False:
return inputs
else:
shapes = tl.get_tensor_shape(inputs)
noise = tl.ops.random_normal(shape=shapes, mean=self.mean, stddev=self.stddev, seed=self.seed)
print(noise)
outputs = inputs + noise
return outputs