tensorlayer3/tensorlayer/layers/convolution/separable_conv.py

316 lines
14 KiB
Python

#! /usr/bin/python
# -*- coding: utf-8 -*-
import tensorlayer as tl
from tensorlayer import logging
from tensorlayer.layers.core import Module
from tensorlayer.backend import BACKEND
__all__ = [
'SeparableConv1d',
'SeparableConv2d',
]
class SeparableConv1d(Module):
"""The :class:`SeparableConv1d` class is a 1D depthwise separable convolutional layer.
This layer performs a depthwise convolution that acts separately on channels, followed by a pointwise convolution that mixes channels.
Parameters
------------
n_filter : int
The dimensionality of the output space (i.e. the number of filters in the convolution).
filter_size : int
Specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
strides : int
Specifying the stride of the convolution. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
act : activation function
The activation function of this layer.
padding : str
One of "valid" or "same" (case-insensitive).
data_format : str
One of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width).
dilation_rate : int
Specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1.
depth_multiplier : int
The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to num_filters_in * depth_multiplier.
depthwise_init : initializer
for the depthwise convolution kernel.
pointwise_init : initializer
For the pointwise convolution kernel.
b_init : initializer
For the bias vector. If None, ignore bias in the pointwise part only.
in_channels : int
The number of in channels.
name : None or str
A unique layer name.
Examples
--------
With TensorLayer
>>> net = tl.layers.Input([8, 50, 64], name='input')
>>> separableconv1d = tl.layers.SeparableConv1d(n_filter=32, filter_size=3, strides=2, padding='SAME', act=tl.ReLU, name='separable_1d')(net)
>>> print(separableconv1d)
>>> output shape : (8, 25, 32)
"""
def __init__(
self, n_filter=32, filter_size=1, stride=1, act=None, padding="SAME", data_format="channels_last",
dilation_rate=1, depth_multiplier=1, depthwise_init=tl.initializers.truncated_normal(stddev=0.02),
pointwise_init=tl.initializers.truncated_normal(stddev=0.02), b_init=tl.initializers.constant(value=0.0),
in_channels=None, name=None
):
super(SeparableConv1d, self).__init__(name, act=act)
self.n_filter = n_filter
self.filter_size = filter_size
self.stride = stride
self.padding = padding
self.data_format = data_format
self.dilation_rate = dilation_rate
self.depth_multiplier = depth_multiplier
self.depthwise_init = depthwise_init
self.pointwise_init = pointwise_init
self.b_init = b_init
self.in_channels = in_channels
if self.in_channels:
self.build(None)
self._built = True
logging.info(
"SeparableConv1d %s: n_filter: %d filter_size: %s strides: %s depth_multiplier: %d act: %s" % (
self.name, n_filter, str(filter_size), str(stride), depth_multiplier,
self.act.__class__.__name__ if self.act is not None else 'No Activation'
)
)
def __repr__(self):
actstr = self.act.__class__.__name__ if self.act is not None else 'No Activation'
s = (
'{classname}(in_channels={in_channels}, out_channels={n_filter}, kernel_size={filter_size}'
', stride={strides}, padding={padding}'
)
if self.dilation_rate != 1:
s += ', dilation={dilation_rate}'
if self.b_init is None:
s += ', bias=False'
s += (', ' + actstr)
if self.name is not None:
s += ', name=\'{name}\''
s += ')'
return s.format(classname=self.__class__.__name__, **self.__dict__)
def build(self, inputs_shape):
if self.data_format == 'channels_last':
self.data_format = 'NWC'
if self.in_channels is None:
self.in_channels = inputs_shape[-1]
elif self.data_format == 'channels_first':
self.data_format = 'NCW'
if self.in_channels is None:
self.in_channels = inputs_shape[1]
else:
raise Exception("data_format should be either channels_last or channels_first")
if BACKEND == 'tensorflow':
self.depthwise_filter_shape = (self.filter_size, self.in_channels, self.depth_multiplier)
elif BACKEND == 'mindspore':
self.depthwise_filter_shape = (self.filter_size, 1, self.depth_multiplier * self.in_channels)
self.pointwise_filter_shape = (1, self.depth_multiplier * self.in_channels, self.n_filter)
self.depthwise_W = self._get_weights(
'depthwise_filters', shape=self.depthwise_filter_shape, init=self.depthwise_init
)
self.pointwise_W = self._get_weights(
'pointwise_filters', shape=self.pointwise_filter_shape, init=self.pointwise_init
)
self.b_init_flag = False
if self.b_init:
self.b = self._get_weights("biases", shape=(self.n_filter, ), init=self.b_init)
self.bias_add = tl.ops.BiasAdd(self.data_format)
self.b_init_flag = True
self.act_init_flag = False
if self.act:
self.activate = self.act
self.act_init_flag = True
self.separable_conv1d = tl.ops.SeparableConv1D(
stride=self.stride, padding=self.padding, data_format=self.data_format, dilations=self.dilation_rate,
out_channel=self.n_filter, k_size=self.filter_size, in_channel=self.in_channels,
depth_multiplier=self.depth_multiplier
)
def forward(self, inputs):
if self._forward_state == False:
if self._built == False:
self.build(tl.get_tensor_shape(inputs))
self._built = True
self._forward_state = True
outputs = self.separable_conv1d(inputs, self.depthwise_W, self.pointwise_W)
if self.b_init_flag:
outputs = self.bias_add(outputs, self.b)
if self.act_init_flag:
outputs = self.act(outputs)
return outputs
class SeparableConv2d(Module):
"""The :class:`SeparableConv2d` class is a 2D depthwise separable convolutional layer.
This layer performs a depthwise convolution that acts separately on channels, followed by a pointwise convolution that mixes channels.
Parameters
------------
n_filter : int
The dimensionality of the output space (i.e. the number of filters in the convolution).
filter_size : tuple of int
Specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
strides : tuple of int
Specifying the stride of the convolution. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
act : activation function
The activation function of this layer.
padding : str
One of "valid" or "same" (case-insensitive).
data_format : str
One of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width).
dilation_rate : tuple of int
Specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1.
depth_multiplier : int
The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to num_filters_in * depth_multiplier.
depthwise_init : initializer
for the depthwise convolution kernel.
pointwise_init : initializer
For the pointwise convolution kernel.
b_init : initializer
For the bias vector. If None, ignore bias in the pointwise part only.
in_channels : int
The number of in channels.
name : None or str
A unique layer name.
Examples
--------
With TensorLayer
>>> net = tl.layers.Input([8, 50, 50, 64], name='input')
>>> separableconv2d = tl.layers.SeparableConv2d(n_filter=32, filter_size=3, strides=2, depth_multiplier = 3 , padding='SAME', act=tl.ReLU, name='separable_2d')(net)
>>> print(separableconv2d)
>>> output shape : (8, 24, 24, 32)
"""
def __init__(
self, n_filter=32, filter_size=(1, 1), strides=(1, 1), act=None, padding="VALID", data_format="channels_last",
dilation_rate=(1, 1), depth_multiplier=1, depthwise_init=tl.initializers.truncated_normal(stddev=0.02),
pointwise_init=tl.initializers.truncated_normal(stddev=0.02), b_init=tl.initializers.constant(value=0.0),
in_channels=None, name=None
):
super(SeparableConv2d, self).__init__(name, act=act)
self.n_filter = n_filter
self.filter_size = filter_size
self._strides = self.strides = strides
self.padding = padding
self.data_format = data_format
self._dilation_rate = self.dilation_rate = dilation_rate
self.depth_multiplier = depth_multiplier
self.depthwise_init = depthwise_init
self.pointwise_init = pointwise_init
self.b_init = b_init
self.in_channels = in_channels
if self.in_channels:
self.build(None)
self._built = True
logging.info(
"SeparableConv2d %s: n_filter: %d filter_size: %s strides: %s depth_multiplier: %d act: %s" % (
self.name, n_filter, str(filter_size), str(strides), depth_multiplier,
self.act.__class__.__name__ if self.act is not None else 'No Activation'
)
)
def __repr__(self):
actstr = self.act.__class__.__name__ if self.act is not None else 'No Activation'
s = (
'{classname}(in_channels={in_channels}, out_channels={n_filter}, kernel_size={filter_size}'
', stride={strides }, padding={padding}'
)
if self.dilation_rate != (1, ) * len(self.dilation_rate):
s += ', dilation={dilation_rate}'
if self.b_init is None:
s += ', bias=False'
s += (', ' + actstr)
if self.name is not None:
s += ', name=\'{name}\''
s += ')'
return s.format(classname=self.__class__.__name__, **self.__dict__)
def build(self, inputs_shape):
if self.data_format == 'channels_last':
self.data_format = 'NHWC'
if self.in_channels is None:
self.in_channels = inputs_shape[-1]
self._strides = [1, self._strides[0], self._strides[1], 1]
self._dilation_rate = [1, self._dilation_rate[0], self._dilation_rate[1], 1]
elif self.data_format == 'channels_first':
self.data_format = 'NCHW'
if self.in_channels is None:
self.in_channels = inputs_shape[1]
self._strides = [1, 1, self._strides[0], self._strides[1]]
self._dilation_rate = [1, 1, self._dilation_rate[0], self._dilation_rate[1]]
else:
raise Exception("data_format should be either channels_last or channels_first")
if BACKEND == 'tensorflow':
self.depthwise_filter_shape = (
self.filter_size[0], self.filter_size[1], self.in_channels, self.depth_multiplier
)
self.pointwise_filter_shape = (1, 1, self.depth_multiplier * self.in_channels, self.n_filter)
elif BACKEND == 'mindspore':
self.depthwise_filter_shape = (
self.filter_size[0], self.filter_size[1], 1, self.depth_multiplier * self.in_channels
)
self.pointwise_filter_shape = (1, 1, self.depth_multiplier * self.in_channels, self.n_filter)
self.depthwise_W = self._get_weights(
'depthwise_filters', shape=self.depthwise_filter_shape, init=self.depthwise_init
)
self.pointwise_W = self._get_weights(
'pointwise_filters', shape=self.pointwise_filter_shape, init=self.pointwise_init
)
self.b_init_flag = False
if self.b_init:
self.b = self._get_weights("biases", shape=(self.n_filter, ), init=self.b_init)
self.bias_add = tl.ops.BiasAdd(self.data_format)
self.b_init_flag = True
self.act_init_flag = False
if self.act:
self.act_init_flag = True
self.separable_conv2d = tl.ops.SeparableConv2D(
strides=self._strides, padding=self.padding, data_format=self.data_format, dilations=self._dilation_rate,
out_channel=self.n_filter, k_size=self.filter_size, in_channel=self.in_channels,
depth_multiplier=self.depth_multiplier
)
def forward(self, inputs):
if self._forward_state == False:
if self._built == False:
self.build(tl.get_tensor_shape(inputs))
self._built = True
self._forward_state = True
outputs = self.separable_conv2d(inputs, self.depthwise_W, self.pointwise_W)
if self.b_init_flag:
outputs = self.bias_add(outputs, self.b)
if self.act_init_flag:
outputs = self.act(outputs)
return outputs