tensorlayer3/tensorlayer/layers/convolution/depthwise_conv.py

171 lines
6.3 KiB
Python

#! /usr/bin/python
# -*- coding: utf-8 -*-
import tensorlayer as tl
from tensorlayer import logging
from tensorlayer.layers.core import Module
from tensorlayer.backend import BACKEND
__all__ = [
'DepthwiseConv2d',
]
class DepthwiseConv2d(Module):
"""Separable/Depthwise Convolutional 2D layer, see `tf.nn.depthwise_conv2d <https://tensorflow.google.cn/versions/r2.0/api_docs/python/tf/nn/depthwise_conv2d>`__.
Input:
4-D Tensor (batch, height, width, in_channels).
Output:
4-D Tensor (batch, new height, new width, in_channels * depth_multiplier).
Parameters
------------
filter_size : tuple of 2 int
The filter size (height, width).
strides : tuple of 2 int
The stride step (height, width).
act : activation function
The activation function of this layer.
padding : str
The padding algorithm type: "SAME" or "VALID".
data_format : str
"channels_last" (NHWC, default) or "channels_first" (NCHW).
dilation_rate: tuple of 2 int
The dilation rate in which we sample input values across the height and width dimensions in atrous convolution. If it is greater than 1, then all values of strides must be 1.
depth_multiplier : int
The number of channels to expand to.
W_init : initializer
The initializer for the weight matrix.
b_init : initializer or None
The initializer for the bias vector. If None, skip bias.
in_channels : int
The number of in channels.
name : str
A unique layer name.
Examples
---------
With TensorLayer
>>> net = tl.layers.Input([8, 200, 200, 32], name='input')
>>> depthwiseconv2d = tl.layers.DepthwiseConv2d(
... filter_size=(3, 3), strides=(1, 1), dilation_rate=(2, 2), act=tl.ReLU, depth_multiplier=2, name='depthwise'
... )(net)
>>> print(depthwiseconv2d)
>>> output shape : (8, 200, 200, 64)
References
-----------
- tflearn's `grouped_conv_2d <https://github.com/tflearn/tflearn/blob/3e0c3298ff508394f3ef191bcd7d732eb8860b2e/tflearn/layers/conv.py>`__
- keras's `separableconv2d <https://keras.io/layers/convolutional/#separableconv2d>`__
"""
# https://zhuanlan.zhihu.com/p/31551004 https://github.com/xiaohu2015/DeepLearning_tutorials/blob/master/CNNs/MobileNet.py
def __init__(
self,
filter_size=(3, 3),
strides=(1, 1),
act=None,
padding='SAME',
data_format='channels_last',
dilation_rate=(1, 1),
depth_multiplier=1,
W_init=tl.initializers.truncated_normal(stddev=0.02),
b_init=tl.initializers.constant(value=0.0),
in_channels=None,
name=None # 'depthwise_conv2d'
):
super().__init__(name, act=act)
self.filter_size = filter_size
self.strides = self._strides = strides
self.padding = padding
self.dilation_rate = self._dilation_rate = dilation_rate
self.data_format = data_format
self.depth_multiplier = depth_multiplier
self.W_init = W_init
self.b_init = b_init
self.in_channels = in_channels
if self.in_channels:
self.build(None)
self._built = True
logging.info(
"DepthwiseConv2d %s: filter_size: %s strides: %s pad: %s act: %s" % (
self.name, str(filter_size), str(strides), padding,
self.act.__class__.__name__ if self.act is not None else 'No Activation'
)
)
def __repr__(self):
actstr = self.act.__class__.__name__ if self.act is not None else 'No Activation'
s = (
'{classname}(in_channels={in_channels}, out_channels={n_filter}, kernel_size={filter_size}'
', strides={strides}, padding={padding}'
)
if self.dilation_rate != (1, ) * len(self.dilation_rate):
s += ', dilation={dilation_rate}'
if self.b_init is None:
s += ', bias=False'
s += (', ' + actstr)
if self.name is not None:
s += ', name=\'{name}\''
s += ')'
return s.format(
classname=self.__class__.__name__, n_filter=self.in_channels * self.depth_multiplier, **self.__dict__
)
def build(self, inputs_shape):
if self.data_format == 'channels_last':
self.data_format = 'NHWC'
if self.in_channels is None:
self.in_channels = inputs_shape[-1]
self._strides = [1, self._strides[0], self._strides[1], 1]
elif self.data_format == 'channels_first':
self.data_format = 'NCHW'
if self.in_channels is None:
self.in_channels = inputs_shape[1]
self._strides = [1, 1, self._strides[0], self._strides[1]]
else:
raise Exception("data_format should be either channels_last or channels_first")
self.filter_shape = (self.filter_size[0], self.filter_size[1], self.in_channels, self.depth_multiplier)
# Set the size of kernel as (K1,K2), then the shape is (K,Cin,K1,K2), K must be 1.
if BACKEND == 'mindspore':
self.filter_shape = (self.filter_size[0], self.filter_size[1], self.in_channels, 1)
self.W = self._get_weights("filters", shape=self.filter_shape, init=self.W_init, transposed=True)
self.depthwise_conv2d = tl.ops.DepthwiseConv2d(
strides=self._strides, padding=self.padding, data_format=self.data_format, dilations=self._dilation_rate,
ksize=self.filter_size, channel_multiplier=self.depth_multiplier
)
self.b_init_flag = False
if self.b_init:
self.b = self._get_weights("biases", shape=(self.in_channels * self.depth_multiplier, ), init=self.b_init)
self.bias_add = tl.ops.BiasAdd(self.data_format)
self.b_init_flag = True
self.act_init_flag = False
if self.act:
self.act_init_flag = True
def forward(self, inputs):
if self._forward_state == False:
if self._built == False:
self.build(tl.get_tensor_shape(inputs))
self._built = True
self._forward_state = True
outputs = self.depthwise_conv2d(input=inputs, filter=self.W)
if self.b_init_flag:
outputs = self.bias_add(outputs, self.b)
if self.act_init_flag:
outputs = self.act(outputs)
return outputs