tensorlayer3/tensorlayer/files/dataset_loaders/voc_dataset.py

336 lines
16 KiB
Python

#! /usr/bin/python
# -*- coding: utf-8 -*-
import os
import tensorflow as tf
from tensorlayer import logging, utils
from tensorlayer.files.utils import (del_file, del_folder, folder_exists, load_file_list, maybe_download_and_extract)
__all__ = ['load_voc_dataset']
def load_voc_dataset(path='data', dataset='2012', contain_classes_in_person=False):
"""Pascal VOC 2007/2012 Dataset.
It has 20 objects:
aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, diningtable, dog, horse, motorbike, person, pottedplant, sheep, sofa, train, tvmonitor
and additional 3 classes : head, hand, foot for person.
Parameters
-----------
path : str
The path that the data is downloaded to, defaults is ``data/VOC``.
dataset : str
The VOC dataset version, `2012`, `2007`, `2007test` or `2012test`. We usually train model on `2007+2012` and test it on `2007test`.
contain_classes_in_person : boolean
Whether include head, hand and foot annotation, default is False.
Returns
---------
imgs_file_list : list of str
Full paths of all images.
imgs_semseg_file_list : list of str
Full paths of all maps for semantic segmentation. Note that not all images have this map!
imgs_insseg_file_list : list of str
Full paths of all maps for instance segmentation. Note that not all images have this map!
imgs_ann_file_list : list of str
Full paths of all annotations for bounding box and object class, all images have this annotations.
classes : list of str
Classes in order.
classes_in_person : list of str
Classes in person.
classes_dict : dictionary
Class label to integer.
n_objs_list : list of int
Number of objects in all images in ``imgs_file_list`` in order.
objs_info_list : list of str
Darknet format for the annotation of all images in ``imgs_file_list`` in order. ``[class_id x_centre y_centre width height]`` in ratio format.
objs_info_dicts : dictionary
The annotation of all images in ``imgs_file_list``, ``{imgs_file_list : dictionary for annotation}``,
format from `TensorFlow/Models/object-detection <https://github.com/tensorflow/models/blob/master/object_detection/create_pascal_tf_record.py>`__.
Examples
----------
>>> imgs_file_list, imgs_semseg_file_list, imgs_insseg_file_list, imgs_ann_file_list,
>>> classes, classes_in_person, classes_dict,
>>> n_objs_list, objs_info_list, objs_info_dicts = tl.files.load_voc_dataset(dataset="2012", contain_classes_in_person=False)
>>> idx = 26
>>> print(classes)
['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']
>>> print(classes_dict)
{'sheep': 16, 'horse': 12, 'bicycle': 1, 'bottle': 4, 'cow': 9, 'sofa': 17, 'car': 6, 'dog': 11, 'cat': 7, 'person': 14, 'train': 18, 'diningtable': 10, 'aeroplane': 0, 'bus': 5, 'pottedplant': 15, 'tvmonitor': 19, 'chair': 8, 'bird': 2, 'boat': 3, 'motorbike': 13}
>>> print(imgs_file_list[idx])
data/VOC/VOC2012/JPEGImages/2007_000423.jpg
>>> print(n_objs_list[idx])
2
>>> print(imgs_ann_file_list[idx])
data/VOC/VOC2012/Annotations/2007_000423.xml
>>> print(objs_info_list[idx])
14 0.173 0.461333333333 0.142 0.496
14 0.828 0.542666666667 0.188 0.594666666667
>>> ann = tl.prepro.parse_darknet_ann_str_to_list(objs_info_list[idx])
>>> print(ann)
[[14, 0.173, 0.461333333333, 0.142, 0.496], [14, 0.828, 0.542666666667, 0.188, 0.594666666667]]
>>> c, b = tl.prepro.parse_darknet_ann_list_to_cls_box(ann)
>>> print(c, b)
[14, 14] [[0.173, 0.461333333333, 0.142, 0.496], [0.828, 0.542666666667, 0.188, 0.594666666667]]
References
-------------
- `Pascal VOC2012 Website <https://pjreddie.com/projects/pascal-voc-dataset-mirror/>`__.
- `Pascal VOC2007 Website <https://pjreddie.com/projects/pascal-voc-dataset-mirror/>`__.
"""
try:
import lxml.etree as etree
except ImportError as e:
print(e)
raise ImportError("Module lxml not found. Please install lxml via pip or other package managers.")
path = os.path.join(path, 'VOC')
def _recursive_parse_xml_to_dict(xml):
"""Recursively parses XML contents to python dict.
We assume that `object` tags are the only ones that can appear
multiple times at the same level of a tree.
Args:
xml: xml tree obtained by parsing XML file contents using lxml.etree
Returns:
Python dictionary holding XML contents.
"""
if xml is not None:
return {xml.tag: xml.text}
result = {}
for child in xml:
child_result = _recursive_parse_xml_to_dict(child)
if child.tag != 'object':
result[child.tag] = child_result[child.tag]
else:
if child.tag not in result:
result[child.tag] = []
result[child.tag].append(child_result[child.tag])
return {xml.tag: result}
import xml.etree.ElementTree as ET
if dataset == "2012":
url = "http://pjreddie.com/media/files/"
tar_filename = "VOCtrainval_11-May-2012.tar"
extracted_filename = "VOC2012" #"VOCdevkit/VOC2012"
logging.info(" [============= VOC 2012 =============]")
elif dataset == "2012test":
extracted_filename = "VOC2012test" #"VOCdevkit/VOC2012"
logging.info(" [============= VOC 2012 Test Set =============]")
logging.info(
" \nAuthor: 2012test only have person annotation, so 2007test is highly recommended for testing !\n"
)
import time
time.sleep(3)
if os.path.isdir(os.path.join(path, extracted_filename)) is False:
logging.info("For VOC 2012 Test data - online registration required")
logging.info(
" Please download VOC2012test.tar from: \n register: http://host.robots.ox.ac.uk:8080 \n voc2012 : http://host.robots.ox.ac.uk:8080/eval/challenges/voc2012/ \ndownload: http://host.robots.ox.ac.uk:8080/eval/downloads/VOC2012test.tar"
)
logging.info(" unzip VOC2012test.tar,rename the folder to VOC2012test and put it into %s" % path)
exit()
# # http://host.robots.ox.ac.uk:8080/eval/downloads/VOC2012test.tar
# url = "http://host.robots.ox.ac.uk:8080/eval/downloads/"
# tar_filename = "VOC2012test.tar"
elif dataset == "2007":
url = "http://pjreddie.com/media/files/"
tar_filename = "VOCtrainval_06-Nov-2007.tar"
extracted_filename = "VOC2007"
logging.info(" [============= VOC 2007 =============]")
elif dataset == "2007test":
# http://host.robots.ox.ac.uk/pascal/VOC/voc2007/index.html#testdata
# http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
url = "http://pjreddie.com/media/files/"
tar_filename = "VOCtest_06-Nov-2007.tar"
extracted_filename = "VOC2007test"
logging.info(" [============= VOC 2007 Test Set =============]")
else:
raise Exception("Please set the dataset aug to 2012, 2012test or 2007.")
# download dataset
if dataset != "2012test":
from sys import platform as _platform
if folder_exists(os.path.join(path, extracted_filename)) is False:
logging.info("[VOC] {} is nonexistent in {}".format(extracted_filename, path))
maybe_download_and_extract(tar_filename, path, url, extract=True)
del_file(os.path.join(path, tar_filename))
if dataset == "2012":
if _platform == "win32":
os.system("move {}\VOCdevkit\VOC2012 {}\VOC2012".format(path, path))
else:
os.system("mv {}/VOCdevkit/VOC2012 {}/VOC2012".format(path, path))
elif dataset == "2007":
if _platform == "win32":
os.system("move {}\VOCdevkit\VOC2007 {}\VOC2007".format(path, path))
else:
os.system("mv {}/VOCdevkit/VOC2007 {}/VOC2007".format(path, path))
elif dataset == "2007test":
if _platform == "win32":
os.system("move {}\VOCdevkit\VOC2007 {}\VOC2007test".format(path, path))
else:
os.system("mv {}/VOCdevkit/VOC2007 {}/VOC2007test".format(path, path))
del_folder(os.path.join(path, 'VOCdevkit'))
# object classes(labels) NOTE: YOU CAN CUSTOMIZE THIS LIST
classes = [
"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog",
"horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"
]
if contain_classes_in_person:
classes_in_person = ["head", "hand", "foot"]
else:
classes_in_person = []
classes += classes_in_person # use extra 3 classes for person
classes_dict = utils.list_string_to_dict(classes)
logging.info("[VOC] object classes {}".format(classes_dict))
# 1. image path list
# folder_imgs = path+"/"+extracted_filename+"/JPEGImages/"
folder_imgs = os.path.join(path, extracted_filename, "JPEGImages")
imgs_file_list = load_file_list(path=folder_imgs, regx='\\.jpg', printable=False)
logging.info("[VOC] {} images found".format(len(imgs_file_list)))
imgs_file_list.sort(
key=lambda s: int(s.replace('.', ' ').replace('_', '').split(' ')[-2])
) # 2007_000027.jpg --> 2007000027
imgs_file_list = [os.path.join(folder_imgs, s) for s in imgs_file_list]
# logging.info('IM',imgs_file_list[0::3333], imgs_file_list[-1])
if dataset != "2012test":
##======== 2. semantic segmentation maps path list
# folder_semseg = path+"/"+extracted_filename+"/SegmentationClass/"
folder_semseg = os.path.join(path, extracted_filename, "SegmentationClass")
imgs_semseg_file_list = load_file_list(path=folder_semseg, regx='\\.png', printable=False)
logging.info("[VOC] {} maps for semantic segmentation found".format(len(imgs_semseg_file_list)))
imgs_semseg_file_list.sort(
key=lambda s: int(s.replace('.', ' ').replace('_', '').split(' ')[-2])
) # 2007_000032.png --> 2007000032
imgs_semseg_file_list = [os.path.join(folder_semseg, s) for s in imgs_semseg_file_list]
# logging.info('Semantic Seg IM',imgs_semseg_file_list[0::333], imgs_semseg_file_list[-1])
##======== 3. instance segmentation maps path list
# folder_insseg = path+"/"+extracted_filename+"/SegmentationObject/"
folder_insseg = os.path.join(path, extracted_filename, "SegmentationObject")
imgs_insseg_file_list = load_file_list(path=folder_insseg, regx='\\.png', printable=False)
logging.info("[VOC] {} maps for instance segmentation found".format(len(imgs_semseg_file_list)))
imgs_insseg_file_list.sort(
key=lambda s: int(s.replace('.', ' ').replace('_', '').split(' ')[-2])
) # 2007_000032.png --> 2007000032
imgs_insseg_file_list = [os.path.join(folder_insseg, s) for s in imgs_insseg_file_list]
# logging.info('Instance Seg IM',imgs_insseg_file_list[0::333], imgs_insseg_file_list[-1])
else:
imgs_semseg_file_list = []
imgs_insseg_file_list = []
# 4. annotations for bounding box and object class
# folder_ann = path+"/"+extracted_filename+"/Annotations/"
folder_ann = os.path.join(path, extracted_filename, "Annotations")
imgs_ann_file_list = load_file_list(path=folder_ann, regx='\\.xml', printable=False)
logging.info(
"[VOC] {} XML annotation files for bounding box and object class found".format(len(imgs_ann_file_list))
)
imgs_ann_file_list.sort(
key=lambda s: int(s.replace('.', ' ').replace('_', '').split(' ')[-2])
) # 2007_000027.xml --> 2007000027
imgs_ann_file_list = [os.path.join(folder_ann, s) for s in imgs_ann_file_list]
# logging.info('ANN',imgs_ann_file_list[0::3333], imgs_ann_file_list[-1])
if dataset == "2012test": # remove unused images in JPEG folder
imgs_file_list_new = []
for ann in imgs_ann_file_list:
ann = os.path.split(ann)[-1].split('.')[0]
for im in imgs_file_list:
if ann in im:
imgs_file_list_new.append(im)
break
imgs_file_list = imgs_file_list_new
logging.info("[VOC] keep %d images" % len(imgs_file_list_new))
# parse XML annotations
def convert(size, box):
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[1]) / 2.0
y = (box[2] + box[3]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return x, y, w, h
def convert_annotation(file_name):
"""Given VOC2012 XML Annotations, returns number of objects and info."""
in_file = open(file_name)
out_file = ""
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
n_objs = 0
for obj in root.iter('object'):
if dataset != "2012test":
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
else:
cls = obj.find('name').text
if cls not in classes:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (
float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text)
)
bb = convert((w, h), b)
out_file += str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n'
n_objs += 1
if cls in "person":
for part in obj.iter('part'):
cls = part.find('name').text
if cls not in classes_in_person:
continue
cls_id = classes.index(cls)
xmlbox = part.find('bndbox')
b = (
float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text),
float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text)
)
bb = convert((w, h), b)
# out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
out_file += str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n'
n_objs += 1
in_file.close()
return n_objs, out_file
logging.info("[VOC] Parsing xml annotations files")
n_objs_list = []
objs_info_list = [] # Darknet Format list of string
objs_info_dicts = {}
for idx, ann_file in enumerate(imgs_ann_file_list):
n_objs, objs_info = convert_annotation(ann_file)
n_objs_list.append(n_objs)
objs_info_list.append(objs_info)
with tf.io.gfile.GFile(ann_file, 'r') as fid:
xml_str = fid.read()
xml = etree.fromstring(xml_str)
data = _recursive_parse_xml_to_dict(xml)['annotation']
objs_info_dicts.update({imgs_file_list[idx]: data})
return imgs_file_list, imgs_semseg_file_list, imgs_insseg_file_list, imgs_ann_file_list, classes, classes_in_person, classes_dict, n_objs_list, objs_info_list, objs_info_dicts