tensorlayer3/tensorlayer/backend/ops/tensorflow_nn.py

2256 lines
77 KiB
Python

#! /usr/bin/python
# -*- coding: utf-8 -*-
import tensorflow as tf
from tensorflow.python.framework import ops
from tensorflow.python.ops import math_ops
from tensorflow.python.training import moving_averages
from math import floor, ceil
import numpy as np
# loss function
sparse_softmax_cross_entropy_with_logits = tf.nn.sparse_softmax_cross_entropy_with_logits
sigmoid_cross_entropy_with_logits = tf.nn.sigmoid_cross_entropy_with_logits
def padding_format(padding):
"""
Checks that the padding format correspond format.
Parameters
----------
padding : str
Must be one of the following:"same", "SAME", "VALID", "valid"
Returns
-------
str "SAME" or "VALID"
"""
if padding in ["SAME", "same"]:
padding = "SAME"
elif padding in ["VALID", "valid"]:
padding = "VALID"
elif padding == None:
padding = None
else:
raise Exception("Unsupported padding: " + str(padding))
return padding
def preprocess_1d_format(data_format, padding):
"""
Checks that the 1-D dataformat format correspond format.
Parameters
----------
data_format : str
Must be one of the following:"channels_last","NWC","NCW","channels_first"
padding : str
Must be one of the following:"same","valid","SAME","VALID"
Returns
-------
str "NWC" or "NCW" and "SAME" or "VALID"
"""
if data_format in ["channels_last", "NWC"]:
data_format = "NWC"
elif data_format in ["channels_first", "NCW"]:
data_format = "NCW"
elif data_format == None:
data_format = None
else:
raise Exception("Unsupported data format: " + str(data_format))
padding = padding_format(padding)
return data_format, padding
def preprocess_2d_format(data_format, padding):
"""
Checks that the 2-D dataformat format correspond format.
Parameters
----------
data_format : str
Must be one of the following:"channels_last","NHWC","NCHW","channels_first"
padding : str
Must be one of the following:"same","valid","SAME","VALID"
Returns
-------
str "NHWC" or "NCHW" and "SAME" or "VALID"
"""
if data_format in ["channels_last", "NHWC"]:
data_format = "NHWC"
elif data_format in ["channels_first", "NCHW"]:
data_format = "NCHW"
elif data_format == None:
data_format = None
else:
raise Exception("Unsupported data format: " + str(data_format))
padding = padding_format(padding)
return data_format, padding
def preprocess_3d_format(data_format, padding):
"""
Checks that the 3-D dataformat format correspond format.
Parameters
----------
data_format : str
Must be one of the following:"channels_last","NDHWC","NCDHW","channels_first"
padding : str
Must be one of the following:"same","valid","SAME","VALID"
Returns
-------
str "NDHWC" or "NCDHW" and "SAME" or "VALID"
"""
if data_format in ['channels_last', 'NDHWC']:
data_format = 'NDHWC'
elif data_format in ['channels_first', 'NCDHW']:
data_format = 'NCDHW'
elif data_format == None:
data_format = None
else:
raise Exception("Unsupported data format: " + str(data_format))
padding = padding_format(padding)
return data_format, padding
def nchw_to_nhwc(x):
"""
Channels first to channels last
Parameters
----------
x : tensor
channels first tensor data
Returns
-------
channels last tensor data
"""
if len(x.shape) == 3:
x = tf.transpose(x, (0, 2, 1))
elif len(x.shape) == 4:
x = tf.transpose(x, (0, 2, 3, 1))
elif len(x.shape) == 5:
x = tf.transpose(x, (0, 2, 3, 4, 1))
else:
raise Exception("Unsupported dimensions")
return x
def nhwc_to_nchw(x):
"""
Channles last to channels first
Parameters
----------
x : tensor
channels last tensor data
Returns
-------
channels first tensor data
"""
if len(x.shape) == 3:
x = tf.transpose(x, (0, 2, 1))
elif len(x.shape) == 4:
x = tf.transpose(x, (0, 3, 1, 2))
elif len(x.shape) == 5:
x = tf.transpose(x, (0, 4, 1, 2, 3))
else:
raise Exception("Unsupported dimensions")
return x
class ReLU(object):
def __init__(self):
pass
def __call__(self, x):
return tf.nn.relu(x)
def relu(x):
"""
Computes rectified linear: max(features, 0).
Parameters
----------
x : tensor
Must be one of the following types: float32, float64, int32, uint8, int16,
int8, int64, bfloat16, uint16, half, uint32, uint64, qint8.
Returns
-------
A Tensor. Has the same type as features.
"""
return tf.nn.relu(x)
class ReLU6(object):
def __init__(self):
pass
def __call__(self, x):
return tf.nn.relu6(x)
def relu6(x):
"""
Computes Rectified Linear 6: min(max(features, 0), 6).
Parameters
----------
x : tensor
Must be one of the following types: float32, float64, int32, uint8, int16,
int8, int64, bfloat16, uint16, half, uint32, uint64, qint8.
Returns
-------
A Tensor with the same type as features.
"""
return tf.nn.relu6(x)
class LeakyReLU(object):
def __init__(self, alpha=0.2):
self.alpha = alpha
def __call__(self, x):
return tf.nn.leaky_relu(x, alpha=self.alpha)
def leaky_relu(x, alpha=0.2):
"""
Compute the Leaky ReLU activation function.
Parameters
----------
x : tensor
representing preactivation values. Must be one of the following types:
float16, float32, float64, int32, int64.
Returns
-------
The activation value.
"""
return tf.nn.leaky_relu(x, alpha=alpha)
class Softplus(object):
def __init__(self):
pass
def __call__(self, x):
return tf.nn.softplus(x)
def softplus(x):
"""
Computes softplus: log(exp(features) + 1).
Parameters
----------
x : tensor
Must be one of the following types: half, bfloat16, float32, float64.
Returns
-------
A Tensor. Has the same type as features.
"""
return tf.nn.softplus(x)
class Tanh(object):
def __init__(self):
pass
def __call__(self, x):
return tf.nn.tanh(x)
def tanh(x):
"""
Computes hyperbolic tangent of x element-wise.
Parameters
----------
x : tensor
Must be one of the following types: bfloat16, half, float32, float64, complex64, complex128.
Returns
-------
A Tensor. Has the same type as x.
"""
return tf.nn.tanh(x)
class Sigmoid(object):
def __init__(self):
pass
def __call__(self, x):
return tf.nn.sigmoid(x)
def sigmoid(x):
"""
Computes sigmoid of x element-wise.
Parameters
----------
x : tensor
A Tensor with type float16, float32, float64, complex64, or complex128.
Returns
-------
A Tensor with the same type as x.
"""
return tf.nn.sigmoid(x)
class Softmax(object):
def __init__(self):
pass
def __call__(self, x):
return tf.nn.softmax(x)
def softmax(logits, axis=None):
"""
Computes softmax activations.
Parameters
----------
logits : tensor
Must be one of the following types: half, float32, float64.
axis : int
The dimension softmax would be performed on. The default is -1 which indicates the last dimension.
Returns
-------
A Tensor. Has the same type and shape as logits.
"""
return tf.nn.softmax(logits, axis)
class Dropout(object):
def __init__(self, keep, seed=0):
self.keep = keep
self.seed = seed
def __call__(self, inputs, *args, **kwargs):
outputs = tf.nn.dropout(inputs, rate=1 - (self.keep), seed=self.seed)
return outputs
class BiasAdd(object):
"""
Adds bias to value.
Parameters
----------
x : tensor
A Tensor with type float, double, int64, int32, uint8, int16, int8, complex64, or complex128.
bias : tensor
Must be the same type as value unless value is a quantized type,
in which case a different quantized type may be used.
Returns
-------
A Tensor with the same type as value.
"""
def __init__(self, data_format=None):
self.data_format = data_format
def __call__(self, x, bias):
return tf.nn.bias_add(x, bias, data_format=self.data_format)
def bias_add(x, bias, data_format=None, name=None):
"""
Adds bias to value.
Parameters
----------
x : tensor
A Tensor with type float, double, int64, int32, uint8, int16, int8, complex64, or complex128.
bias : tensor
Must be the same type as value unless value is a quantized type,
in which case a different quantized type may be used.
data_format : A string.
'N...C' and 'NC...' are supported.
name : str
A name for the operation (optional).
Returns
-------
A Tensor with the same type as value.
"""
x = tf.nn.bias_add(x, bias, data_format=data_format, name=name)
return x
class Conv1D(object):
def __init__(self, stride, padding, data_format='NWC', dilations=None, out_channel=None, k_size=None):
self.stride = stride
self.dilations = dilations
self.data_format, self.padding = preprocess_1d_format(data_format, padding)
def __call__(self, input, filters):
outputs = tf.nn.conv1d(
input=input,
filters=filters,
stride=self.stride,
padding=self.padding,
data_format=self.data_format,
dilations=self.dilations,
# name=name
)
return outputs
def conv1d(input, filters, stride, padding, data_format='NWC', dilations=None):
"""
Computes a 1-D convolution given 3-D input and filter tensors.
Parameters
----------
input : tensor
A 3D Tensor. Must be of type float16, float32, or float64
filters : tensor
A 3D Tensor. Must have the same type as input.
stride : int of list
An int or list of ints that has length 1 or 3. The number of entries by which the filter is moved right at each step.
padding : string
'SAME' or 'VALID'
data_format : string
An optional string from "NWC", "NCW". Defaults to "NWC", the data is stored in the order of
[batch, in_width, in_channels]. The "NCW" format stores data as [batch, in_channels, in_width].
dilations : int or list
An int or list of ints that has length 1 or 3 which defaults to 1.
The dilation factor for each dimension of input. If set to k > 1,
there will be k-1 skipped cells between each filter element on that dimension.
Dilations in the batch and depth dimensions must be 1.
name : string
A name for the operation (optional).
Returns
-------
A Tensor. Has the same type as input.
"""
data_format, padding = preprocess_1d_format(data_format, padding)
outputs = tf.nn.conv1d(
input=input,
filters=filters,
stride=stride,
padding=padding,
data_format=data_format,
dilations=dilations,
# name=name
)
return outputs
class Conv2D(object):
def __init__(self, strides, padding, data_format='NHWC', dilations=None, out_channel=None, k_size=None):
self.strides = strides
self.dilations = dilations
self.data_format, self.padding = preprocess_2d_format(data_format, padding)
def __call__(self, input, filters):
outputs = tf.nn.conv2d(
input=input,
filters=filters,
strides=self.strides,
padding=self.padding,
data_format=self.data_format,
dilations=self.dilations,
)
return outputs
def conv2d(input, filters, strides, padding, data_format='NHWC', dilations=None):
"""
Computes a 2-D convolution given 4-D input and filters tensors.
Parameters
----------
input : tensor
Must be one of the following types: half, bfloat16, float32, float64. A 4-D tensor.
The dimension order is interpreted according to the value of data_format, see below for details.
filters : tensor
Must have the same type as input. A 4-D tensor of shape [filter_height, filter_width, in_channels, out_channels]
strides : int of list
The stride of the sliding window for each dimension of input. If a single value is given it is replicated in the H and W dimension.
By default the N and C dimensions are set to 1. The dimension order is determined by the value of data_format, see below for details.
padding : string
"SAME" or "VALID"
data_format : string
"NHWC", "NCHW". Defaults to "NHWC".
dilations : list or ints
list of ints that has length 1, 2 or 4, defaults to 1. The dilation factor for each dimension ofinput.
name : string
A name for the operation (optional).
Returns
-------
A Tensor. Has the same type as input.
"""
data_format, padding = preprocess_2d_format(data_format, padding)
outputs = tf.nn.conv2d(
input=input,
filters=filters,
strides=strides,
padding=padding,
data_format=data_format,
dilations=dilations,
)
return outputs
class Conv3D(object):
def __init__(self, strides, padding, data_format='NDHWC', dilations=None, out_channel=None, k_size=None):
self.strides = strides
self.dilations = dilations
self.data_format, self.padding = preprocess_3d_format(data_format, padding)
def __call__(self, input, filters):
outputs = tf.nn.conv3d(
input=input,
filters=filters,
strides=self.strides,
padding=self.padding,
data_format=self.data_format,
dilations=self.dilations,
)
return outputs
def conv3d(input, filters, strides, padding, data_format='NDHWC', dilations=None):
"""
Computes a 3-D convolution given 5-D input and filters tensors.
Parameters
----------
input : tensor
Must be one of the following types: half, bfloat16, float32, float64.
Shape [batch, in_depth, in_height, in_width, in_channels].
filters : tensor
Must have the same type as input. Shape [filter_depth, filter_height, filter_width, in_channels, out_channels].
in_channels must match between input and filters.
strides : list of ints
A list of ints that has length >= 5. 1-D tensor of length 5.
The stride of the sliding window for each dimension of input.
Must have strides[0] = strides[4] = 1.
padding : string
A string from: "SAME", "VALID". The type of padding algorithm to use.
data_format : string
An optional string from: "NDHWC", "NCDHW". Defaults to "NDHWC". The data format of the input and output data.
With the default format "NDHWC", the data is stored in the order of: [batch, in_depth, in_height, in_width, in_channels].
Alternatively, the format could be "NCDHW", the data storage order is: [batch, in_channels, in_depth, in_height, in_width].
dilations : list of ints
Defaults to [1, 1, 1, 1, 1]. 1-D tensor of length 5. The dilation factor for each dimension of input.
If set to k > 1, there will be k-1 skipped cells between each filter element on that dimension.
The dimension order is determined by the value of data_format, see above for details.
Dilations in the batch and depth dimensions must be 1.
name : string
A name for the operation (optional).
Returns
-------
A Tensor. Has the same type as input.
"""
data_format, padding = preprocess_3d_format(data_format, padding)
outputs = tf.nn.conv3d(
input=input,
filters=filters,
strides=strides,
padding=padding,
data_format=data_format, # 'NDHWC',
dilations=dilations, # [1, 1, 1, 1, 1],
# name=name,
)
return outputs
def lrn(inputs, depth_radius, bias, alpha, beta):
"""
Local Response Normalization.
Parameters
----------
inputs : tensor
Must be one of the following types: half, bfloat16, float32. 4-D.
depth_radius : int
Defaults to 5. 0-D. Half-width of the 1-D normalization window.
bias : float
Defaults to 1. An offset (usually positive to avoid dividing by 0).
alpha : float
Defaults to 1. A scale factor, usually positive.
beta : float
Defaults to 0.5. An exponent.
Returns
-------
A Tensor. Has the same type as input.
"""
outputs = tf.nn.lrn(inputs, depth_radius=depth_radius, bias=bias, alpha=alpha, beta=beta)
return outputs
def moments(x, axes, shift=None, keepdims=False):
"""
Calculates the mean and variance of x.
Parameters
----------
x : tensor
A Tensor
axes : list or ints
Axes along which to compute mean and variance.
shift : int
Not used in the current implementation.
keepdims : bool
produce moments with the same dimensionality as the input.
Returns
-------
Two Tensor objects: mean and variance.
"""
outputs = tf.nn.moments(x, axes, shift, keepdims)
return outputs
class MaxPool1d(object):
def __init__(self, ksize, strides, padding, data_format=None):
self.data_format, self.padding = preprocess_1d_format(data_format=data_format, padding=padding)
self.ksize = ksize
self.strides = strides
def __call__(self, inputs):
outputs = tf.nn.max_pool(
input=inputs, ksize=self.ksize, strides=self.strides, padding=self.padding, data_format=self.data_format
)
return outputs
class MaxPool(object):
def __init__(self, ksize, strides, padding, data_format=None):
self.ksize = ksize
self.strides = strides
self.data_format = data_format
self.padding = padding
def __call__(self, inputs):
if inputs.ndim == 3:
self.data_format, self.padding = preprocess_1d_format(data_format=self.data_format, padding=self.padding)
elif inputs.ndim == 4:
self.data_format, self.padding = preprocess_2d_format(data_format=self.data_format, padding=self.padding)
elif inputs.ndim == 5:
self.data_format, self.padding = preprocess_3d_format(data_format=self.data_format, padding=self.padding)
outputs = tf.nn.max_pool(
input=inputs, ksize=self.ksize, strides=self.strides, padding=self.padding, data_format=self.data_format
)
return outputs
def max_pool(input, ksize, strides, padding, data_format=None):
"""
Performs the max pooling on the input.
Parameters
----------
input : tensor
Tensor of rank N+2, of shape [batch_size] + input_spatial_shape + [num_channels] if data_format does not start
with "NC" (default), or [batch_size, num_channels] + input_spatial_shape if data_format starts with "NC".
Pooling happens over the spatial dimensions only.
ksize : int or list of ints
An int or list of ints that has length 1, N or N+2.
The size of the window for each dimension of the input tensor.
strides : int or list of ints
An int or list of ints that has length 1, N or N+2.
The stride of the sliding window for each dimension of the input tensor.
padding : string
'VALID' or 'SAME'. The padding algorithm. See the "returns" section of tf.ops.convolution for details.
name : string
A name for the operation (optional).
Returns
-------
A Tensor of format specified by data_format. The max pooled output tensor.
"""
if input.ndim == 3:
data_format, padding = preprocess_1d_format(data_format=data_format, padding=padding)
elif input.ndim == 4:
data_format, padding = preprocess_2d_format(data_format=data_format, padding=padding)
elif input.ndim == 5:
data_format, padding = preprocess_3d_format(data_format=data_format, padding=padding)
outputs = tf.nn.max_pool(input=input, ksize=ksize, strides=strides, padding=padding, data_format=data_format)
return outputs
class AvgPool1d(object):
def __init__(self, ksize, strides, padding, data_format=None):
self.data_format, self.padding = preprocess_1d_format(data_format=data_format, padding=padding)
self.ksize = ksize
self.strides = strides
def __call__(self, inputs):
outputs = tf.nn.pool(
input=inputs,
window_shape=self.ksize,
pooling_type="AVG",
strides=self.strides,
padding=self.padding,
data_format=self.data_format,
)
return outputs
class AvgPool(object):
def __init__(self, ksize, strides, padding, data_format=None):
self.ksize = ksize
self.strides = strides
self.data_format = data_format
self.padding = padding_format(padding)
def __call__(self, inputs):
outputs = tf.nn.avg_pool(
input=inputs, ksize=self.ksize, strides=self.strides, padding=self.padding, data_format=self.data_format
)
return outputs
def avg_pool(input, ksize, strides, padding):
"""
Performs the avg pooling on the input.
Parameters
----------
input : tensor
Tensor of rank N+2, of shape [batch_size] + input_spatial_shape + [num_channels]
if data_format does not start with "NC" (default), or [batch_size, num_channels] + input_spatial_shape
if data_format starts with "NC". Pooling happens over the spatial dimensions only.
ksize : int or list of ints
An int or list of ints that has length 1, N or N+2.
The size of the window for each dimension of the input tensor.
strides : int or list of ints
An int or list of ints that has length 1, N or N+2.
The stride of the sliding window for each dimension of the input tensor.
padding : string
'VALID' or 'SAME'. The padding algorithm. See the "returns" section of tf.ops.convolution for details.
name : string
Optional name for the operation.
Returns
-------
A Tensor of format specified by data_format. The average pooled output tensor.
"""
padding = padding_format(padding)
outputs = tf.nn.avg_pool(
input=input,
ksize=ksize,
strides=strides,
padding=padding,
)
return outputs
class MaxPool3d(object):
def __init__(self, ksize, strides, padding, data_format=None):
self.data_format, self.padding = preprocess_3d_format(data_format, padding)
self.ksize = ksize
self.strides = strides
def __call__(self, inputs):
outputs = tf.nn.max_pool3d(
input=inputs,
ksize=self.ksize,
strides=self.strides,
padding=self.padding,
data_format=self.data_format,
)
return outputs
def max_pool3d(input, ksize, strides, padding, data_format=None):
"""
Performs the max pooling on the input.
Parameters
----------
input : tensor
A 5-D Tensor of the format specified by data_format.
ksize : int or list of ints
An int or list of ints that has length 1, 3 or 5.
The size of the window for each dimension of the input tensor.
strides : int or list of ints
An int or list of ints that has length 1, 3 or 5.
The stride of the sliding window for each dimension of the input tensor.
padding : string
'VALID' or 'SAME'. The padding algorithm. See the "returns" section of tf.ops.convolution for details.
data_format : string
"NDHWC", "NCDHW". Defaults to "NDHWC". The data format of the input and output data.
With the default format "NDHWC", the data is stored in the order of: [batch, in_depth, in_height, in_width, in_channels].
Alternatively, the format could be "NCDHW", the data storage order is: [batch, in_channels, in_depth, in_height, in_width].
name : string
A name for the operation (optional).
Returns
-------
A Tensor of format specified by data_format. The max pooled output tensor.
"""
data_format, padding = preprocess_3d_format(data_format, padding)
outputs = tf.nn.max_pool3d(
input=input,
ksize=ksize,
strides=strides,
padding=padding,
data_format=data_format,
)
return outputs
class AvgPool3d(object):
def __init__(self, ksize, strides, padding, data_format=None):
self.data_format, self.padding = preprocess_3d_format(data_format, padding)
self.ksize = ksize
self.strides = strides
def __call__(self, inputs):
outputs = tf.nn.avg_pool3d(
input=inputs,
ksize=self.ksize,
strides=self.strides,
padding=self.padding,
data_format=self.data_format,
)
return outputs
def avg_pool3d(input, ksize, strides, padding, data_format=None):
"""
Performs the average pooling on the input.
Parameters
----------
input : tensor
A 5-D Tensor of shape [batch, height, width, channels] and type float32, float64, qint8, quint8, or qint32.
ksize : int or list of ints
An int or list of ints that has length 1, 3 or 5. The size of the window for each dimension of the input tensor.
strides : int or list of ints
An int or list of ints that has length 1, 3 or 5.
The stride of the sliding window for each dimension of the input tensor.
padding : string
'VALID' or 'SAME'. The padding algorithm. See the "returns" section of tf.ops.convolution for details.
data_format : string
'NDHWC' and 'NCDHW' are supported.
name : string
Optional name for the operation.
Returns
-------
A Tensor with the same type as value. The average pooled output tensor.
"""
data_format, padding = preprocess_3d_format(data_format, padding)
outputs = tf.nn.avg_pool3d(
input=input,
ksize=ksize,
strides=strides,
padding=padding,
data_format=data_format,
)
return outputs
def pool(input, window_shape, pooling_type, strides=None, padding='VALID', data_format=None, dilations=None, name=None):
"""
Performs an N-D pooling operation.
Parameters
----------
input : tensor
Tensor of rank N+2, of shape [batch_size] + input_spatial_shape + [num_channels]
if data_format does not start with "NC" (default), or [batch_size, num_channels] + input_spatial_shape
if data_format starts with "NC". Pooling happens over the spatial dimensions only.
window_shape : int
Sequence of N ints >= 1.
pooling_type : string
Specifies pooling operation, must be "AVG" or "MAX".
strides : ints
Sequence of N ints >= 1. Defaults to [1]*N. If any value of strides is > 1, then all values of dilation_rate must be 1.
padding : string
The padding algorithm, must be "SAME" or "VALID". Defaults to "SAME".
See the "returns" section of tf.ops.convolution for details.
data_format : string
Specifies whether the channel dimension of the input and output is the last dimension (default, or if data_format does not start with "NC"),
or the second dimension (if data_format starts with "NC").
For N=1, the valid values are "NWC" (default) and "NCW". For N=2, the valid values are "NHWC" (default) and "NCHW".
For N=3, the valid values are "NDHWC" (default) and "NCDHW".
dilations : list of ints
Dilation rate. List of N ints >= 1. Defaults to [1]*N. If any value of dilation_rate is > 1, then all values of strides must be 1.
name : string
Optional. Name of the op.
Returns
-------
Tensor of rank N+2, of shape [batch_size] + output_spatial_shape + [num_channels]
"""
if pooling_type in ["MAX", "max"]:
pooling_type = "MAX"
elif pooling_type in ["AVG", "avg"]:
pooling_type = "AVG"
else:
raise ValueError('Unsupported pool_mode: ' + str(pooling_type))
padding = padding_format(padding)
outputs = tf.nn.pool(
input=input,
window_shape=window_shape,
pooling_type=pooling_type,
strides=strides,
padding=padding,
data_format=data_format,
dilations=dilations,
name=name,
)
return outputs
class DepthwiseConv2d(object):
def __init__(self, strides, padding, data_format=None, dilations=None, ksize=None, channel_multiplier=1):
self.data_format, self.padding = preprocess_2d_format(data_format, padding)
self.strides = strides
self.dilations = dilations
def __call__(self, input, filter):
outputs = tf.nn.depthwise_conv2d(
input=input,
filter=filter,
strides=self.strides,
padding=self.padding,
data_format=self.data_format,
dilations=self.dilations,
)
return outputs
def depthwise_conv2d(input, filter, strides, padding, data_format=None, dilations=None, name=None):
"""
Depthwise 2-D convolution.
Parameters
----------
input : tensor
4-D with shape according to data_format.
filter : tensor
4-D with shape [filter_height, filter_width, in_channels, channel_multiplier].
strides : list
1-D of size 4. The stride of the sliding window for each dimension of input.
padding : string
'VALID' or 'SAME'. The padding algorithm. See the "returns" section of tf.ops.convolution for details.
data_format : string
The data format for input. Either "NHWC" (default) or "NCHW".
dilations : list
1-D of size 2. The dilation rate in which we sample input values across the height and width dimensions in atrous convolution.
If it is greater than 1, then all values of strides must be 1.
name : string
A name for this operation (optional).
Returns
-------
A 4-D Tensor with shape according to data_format.
E.g., for "NHWC" format, shape is [batch, out_height, out_width, in_channels * channel_multiplier].
"""
data_format, padding = preprocess_2d_format(data_format, padding)
outputs = tf.nn.depthwise_conv2d(
input=input,
filter=filter,
strides=strides,
padding=padding,
data_format=data_format,
dilations=dilations,
name=name,
)
return outputs
class Conv1d_transpose(object):
def __init__(
self, stride, padding, data_format='NWC', dilations=None, out_channel=None, k_size=None, in_channels=None
):
self.stride = stride
self.dilations = dilations
self.data_format, self.padding = preprocess_1d_format(data_format, padding)
def __call__(self, input, filters):
batch_size = input.shape[0]
if self.data_format == 'NWC':
w_axis, c_axis = 1, 2
else:
w_axis, c_axis = 2, 1
input_shape = input.shape.as_list()
filters_shape = filters.shape.as_list()
input_w = input_shape[w_axis]
filters_w = filters_shape[0]
output_channels = filters_shape[1]
dilations_w = 1
if isinstance(self.stride, int):
strides_w = self.stride
else:
strides_list = list(self.stride)
strides_w = strides_list[w_axis]
if self.dilations is not None:
if isinstance(self.dilations, int):
dilations_w = self.dilations
else:
dilations_list = list(self.dilations)
dilations_w = dilations_list[w_axis]
filters_w = filters_w + (filters_w - 1) * (dilations_w - 1)
assert self.padding in {'SAME', 'VALID'}
if self.padding == 'VALID':
output_w = input_w * strides_w + max(filters_w - strides_w, 0)
elif self.padding == 'SAME':
output_w = input_w * strides_w
if self.data_format == 'NCW':
output_shape = (batch_size, output_channels, output_w)
else:
output_shape = (batch_size, output_w, output_channels)
output_shape = tf.stack(output_shape)
outputs = tf.nn.conv1d_transpose(
input=input,
filters=filters,
output_shape=output_shape,
strides=self.stride,
padding=self.padding,
data_format=self.data_format,
dilations=self.dilations,
)
return outputs
def conv1d_transpose(
input, filters, output_shape, strides, padding='SAME', data_format='NWC', dilations=None, name=None
):
"""
The transpose of conv1d.
Parameters
----------
input : tensor
A 3-D Tensor of type float and shape [batch, in_width, in_channels]
for NWC data format or [batch, in_channels, in_width] for NCW data format.
filters : tensor
A 3-D Tensor with the same type as value and shape [filter_width, output_channels, in_channels].
filter's in_channels dimension must match that of value.
output_shape : tensor
A 1-D Tensor, containing three elements, representing the output shape of the deconvolution op.
strides : list
An int or list of ints that has length 1 or 3. The number of entries by which the filter is moved right at each step.
padding : string
'VALID' or 'SAME'. The padding algorithm. See the "returns" section of tf.ops.convolution for details.
data_format : string
'NWC' and 'NCW' are supported.
dilations : list
An int or list of ints that has length 1 or 3 which defaults to 1.
The dilation factor for each dimension of input. If set to k > 1,
there will be k-1 skipped cells between each filter element on that dimension.
Dilations in the batch and depth dimensions must be 1.
name : string
Optional name for the returned tensor.
Returns
-------
A Tensor with the same type as value.
"""
data_format, padding = preprocess_1d_format(data_format, padding)
outputs = tf.nn.conv1d_transpose(
input=input,
filters=filters,
output_shape=output_shape,
strides=strides,
padding=padding,
data_format=data_format,
dilations=dilations,
name=name,
)
return outputs
class Conv2d_transpose(object):
def __init__(
self, strides, padding, data_format='NHWC', dilations=None, name=None, out_channel=None, k_size=None,
in_channels=None
):
self.strides = strides
self.dilations = dilations
self.name = name
self.data_format, self.padding = preprocess_2d_format(data_format, padding)
def __call__(self, input, filters):
if self.data_format == 'NHWC':
h_axis, w_axis = 1, 2
else:
h_axis, w_axis = 2, 3
input_shape = input.shape.as_list()
filters_shape = filters.shape.as_list()
batch_size = input.shape[0]
input_h, input_w = input_shape[h_axis], input_shape[w_axis]
kernel_h, kernel_w = filters_shape[0], filters_shape[1]
output_channels = filters_shape[2]
dilations_h, dilations_w = 1, 1
if isinstance(self.strides, int):
strides_h = self.strides
strides_w = self.strides
else:
strides_list = list(self.strides)
if len(strides_list) == 2:
strides_h = strides_list[0]
strides_w = strides_list[1]
elif len(strides_list) == 4:
strides_h = strides_list[h_axis]
strides_w = strides_list[w_axis]
if self.dilations is not None:
if isinstance(self.dilations, int):
dilations_h = self.dilations
dilations_w = self.dilations
else:
dilations_list = list(self.dilations)
if len(dilations_list) == 2:
dilations_h = dilations_list[0]
dilations_w = dilations_list[1]
elif len(dilations_list) == 4:
dilations_h = dilations_list[h_axis]
dilations_w = dilations_list[w_axis]
kernel_h = kernel_h + (kernel_h - 1) * (dilations_h - 1)
kernel_w = kernel_w + (kernel_w - 1) * (dilations_w - 1)
assert self.padding in {'SAME', 'VALID'}
if self.padding == 'VALID':
output_h = input_h * strides_h + max(kernel_h - strides_h, 0)
output_w = input_w * strides_w + max(kernel_w - strides_w, 0)
elif self.padding == 'SAME':
output_h = input_h * strides_h
output_w = input_w * strides_w
if self.data_format == 'NCHW':
out_shape = (batch_size, output_channels, output_h, output_w)
else:
out_shape = (batch_size, output_h, output_w, output_channels)
output_shape = tf.stack(out_shape)
outputs = tf.nn.conv2d_transpose(
input=input, filters=filters, output_shape=output_shape, strides=self.strides, padding=self.padding,
data_format=self.data_format, dilations=self.dilations, name=self.name
)
return outputs
def conv2d_transpose(
input, filters, output_shape, strides, padding='SAME', data_format='NHWC', dilations=None, name=None
):
"""
The transpose of conv2d.
Parameters
----------
input : tensor
A 4-D Tensor of type float and shape [batch, height, width, in_channels]
for NHWC data format or [batch, in_channels, height, width] for NCHW data format.
filters : tensor
A 4-D Tensor with the same type as input and shape [height, width,
output_channels, in_channels]. filter's in_channels dimension must match that of input.
output_shape : tensor
A 1-D Tensor representing the output shape of the deconvolution op.
strides : list
An int or list of ints that has length 1, 2 or 4. The stride of the sliding window for each dimension of input.
If a single value is given it is replicated in the H and W dimension.
By default the N and C dimensions are set to 0.
The dimension order is determined by the value of data_format, see below for details.
padding : string
'VALID' or 'SAME'. The padding algorithm. See the "returns" section of tf.ops.convolution for details.
data_format : string
'NHWC' and 'NCHW' are supported.
dilations : list
An int or list of ints that has length 1, 2 or 4, defaults to 1.
name : string
Optional name for the returned tensor.
Returns
-------
A Tensor with the same type as input.
"""
data_format, padding = preprocess_2d_format(data_format, padding)
outputs = tf.nn.conv2d_transpose(
input=input,
filters=filters,
output_shape=output_shape,
strides=strides,
padding=padding,
data_format=data_format,
dilations=dilations,
name=name,
)
return outputs
class Conv3d_transpose(object):
def __init__(
self, strides, padding, data_format='NDHWC', dilations=None, name=None, out_channel=None, k_size=None,
in_channels=None
):
self.strides = strides
self.dilations = dilations
self.name = name
self.out_channel = out_channel
self.data_format, self.padding = preprocess_3d_format(data_format, padding)
def __call__(self, input, filters):
if self.data_format == 'NDHWC':
d_axis, h_axis, w_axis = 1, 2, 3
else:
d_axis, h_axis, w_axis = 2, 3, 4
input_shape = input.shape.as_list()
filters_shape = filters.shape.as_list()
batch_size = input_shape[0]
input_d, input_h, input_w = input_shape[d_axis], input_shape[h_axis], input_shape[w_axis]
kernel_d, kernel_h, kernel_w = filters_shape[0], filters_shape[1], filters_shape[2]
dilations_d, dilations_h, dilations_w = 1, 1, 1
if isinstance(self.strides, int):
strides_d, strides_h, strides_w = self.strides
else:
strides_list = list(self.strides)
if len(strides_list) == 3:
strides_d, strides_h, strides_w = \
strides_list[0], \
strides_list[1], \
strides_list[2]
elif len(strides_list) == 5:
strides_d, strides_h, strides_w = \
strides_list[d_axis], \
strides_list[h_axis], \
strides_list[w_axis]
if self.dilations is not None:
if isinstance(self.dilations, int):
dilations_d, dilations_h, dilations_w = self.dilations
else:
dilations_list = list(self.dilations)
if len(dilations_list) == 3:
dilations_d, dilations_h, dilations_w = \
dilations_list[0], \
dilations_list[1], \
dilations_list[2]
elif len(dilations_list) == 5:
dilations_d, dilations_h, dilations_w = \
dilations_list[d_axis],\
dilations_list[h_axis], \
dilations_list[w_axis]
assert self.padding in {'VALID', 'SAME'}
kernel_d = kernel_d + (kernel_d - 1) * (dilations_d - 1)
kernel_h = kernel_h + (kernel_h - 1) * (dilations_h - 1)
kernel_w = kernel_w + (kernel_w - 1) * (dilations_w - 1)
if self.padding == 'VALID':
output_d = input_d * strides_d + max(kernel_d - strides_d, 0)
output_h = input_h * strides_h + max(kernel_h - strides_h, 0)
output_w = input_w * strides_w + max(kernel_w - strides_w, 0)
elif self.padding == 'SAME':
output_d = input_d * strides_d
output_h = input_h * strides_h
output_w = input_w * strides_w
if self.data_format == 'NDHWC':
output_shape = (batch_size, output_d, output_h, output_w, self.out_channel)
else:
output_shape = (batch_size, self.out_channel, output_d, output_h, output_w)
output_shape = tf.stack(output_shape)
outputs = tf.nn.conv3d_transpose(
input=input, filters=filters, output_shape=output_shape, strides=self.strides, padding=self.padding,
data_format=self.data_format, dilations=self.dilations, name=self.name
)
return outputs
def conv3d_transpose(
input, filters, output_shape, strides, padding='SAME', data_format='NDHWC', dilations=None, name=None
):
"""
The transpose of conv3d.
Parameters
----------
input : tensor
A 5-D Tensor of type float and shape [batch, height, width, in_channels] for
NHWC data format or [batch, in_channels, height, width] for NCHW data format.
filters : tensor
A 5-D Tensor with the same type as value and shape [height, width, output_channels, in_channels].
filter's in_channels dimension must match that of value.
output_shape : tensor
A 1-D Tensor representing the output shape of the deconvolution op.
strides : list
An int or list of ints that has length 1, 3 or 5.
padding : string
'VALID' or 'SAME'. The padding algorithm. See the "returns" section of tf.ops.convolution for details.
data_format : string
'NDHWC' and 'NCDHW' are supported.
dilations : list of ints
An int or list of ints that has length 1, 3 or 5, defaults to 1.
name : string
Optional name for the returned tensor.
Returns
-------
A Tensor with the same type as value.
"""
data_format, padding = preprocess_3d_format(data_format, padding)
outputs = tf.nn.conv3d_transpose(
input=input, filters=filters, output_shape=output_shape, strides=strides, padding=padding,
data_format=data_format, dilations=dilations, name=name
)
return outputs
def depthwise_conv2d(input, filters, strides, padding='SAME', data_format='NHWC', dilations=None, name=None):
"""
Depthwise 2-D convolution.
Parameters
----------
input : tensor
4-D with shape according to data_format.
filters : tensor
4-D with shape [filter_height, filter_width, in_channels, channel_multiplier].
strides : tuple
1-D of size 4. The stride of the sliding window for each dimension of input.
padding : string
'VALID' or 'SAME'
data_format : string
"NHWC" (default) or "NCHW".
dilations : tuple
The dilation rate in which we sample input values across the height and width dimensions in atrous convolution.
If it is greater than 1, then all values of strides must be 1.
name : string
A name for this operation (optional).
Returns
-------
A 4-D Tensor with shape according to data_format.
"""
data_format, padding = preprocess_2d_format(data_format, padding)
outputs = tf.nn.depthwise_conv2d(
input=input,
filter=filters,
strides=strides,
padding=padding,
data_format=data_format,
dilations=dilations,
name=name,
)
return outputs
def _to_channel_first_bias(b):
"""Reshape [c] to [c, 1, 1]."""
channel_size = int(b.shape[0])
new_shape = (channel_size, 1, 1)
return tf.reshape(b, new_shape)
def _bias_scale(x, b, data_format):
"""The multiplication counter part of tf.nn.bias_add."""
if data_format == 'NHWC':
return x * b
elif data_format == 'NCHW':
return x * _to_channel_first_bias(b)
else:
raise ValueError('invalid data_format: %s' % data_format)
def _bias_add(x, b, data_format):
"""Alternative implementation of tf.nn.bias_add which is compatiable with tensorRT."""
if data_format == 'NHWC':
return tf.add(x, b)
elif data_format == 'NCHW':
return tf.add(x, _to_channel_first_bias(b))
else:
raise ValueError('invalid data_format: %s' % data_format)
def batch_normalization(x, mean, variance, offset, scale, variance_epsilon, data_format, name=None):
"""Data Format aware version of tf.nn.batch_normalization."""
if data_format == 'channels_last':
mean = tf.reshape(mean, [1] * (len(x.shape) - 1) + [-1])
variance = tf.reshape(variance, [1] * (len(x.shape) - 1) + [-1])
offset = tf.reshape(offset, [1] * (len(x.shape) - 1) + [-1])
scale = tf.reshape(scale, [1] * (len(x.shape) - 1) + [-1])
elif data_format == 'channels_first':
mean = tf.reshape(mean, [1] + [-1] + [1] * (len(x.shape) - 2))
variance = tf.reshape(variance, [1] + [-1] + [1] * (len(x.shape) - 2))
offset = tf.reshape(offset, [1] + [-1] + [1] * (len(x.shape) - 2))
scale = tf.reshape(scale, [1] + [-1] + [1] * (len(x.shape) - 2))
else:
raise ValueError('invalid data_format: %s' % data_format)
with ops.name_scope(name, 'batchnorm', [x, mean, variance, scale, offset]):
inv = math_ops.rsqrt(variance + variance_epsilon)
if scale is not None:
inv *= scale
a = math_ops.cast(inv, x.dtype)
b = math_ops.cast(offset - mean * inv if offset is not None else -mean * inv, x.dtype)
# Return a * x + b with customized data_format.
# Currently TF doesn't have bias_scale, and tensorRT has bug in converting tf.nn.bias_add
# So we reimplemted them to allow make the model work with tensorRT.
# See https://github.com/tensorlayer/openpose-plus/issues/75 for more details.
# df = {'channels_first': 'NCHW', 'channels_last': 'NHWC'}
# return _bias_add(_bias_scale(x, a, df[data_format]), b, df[data_format])
return a * x + b
class BatchNorm(object):
"""
The :class:`BatchNorm` is a batch normalization layer for both fully-connected and convolution outputs.
See ``tf.nn.batch_normalization`` and ``tf.nn.moments``.
Parameters
----------
decay : float
A decay factor for `ExponentialMovingAverage`.
Suggest to use a large value for large dataset.
epsilon : float
Eplison.
act : activation function
The activation function of this layer.
is_train : boolean
Is being used for training or inference.
beta_init : initializer or None
The initializer for initializing beta, if None, skip beta.
Usually you should not skip beta unless you know what happened.
gamma_init : initializer or None
The initializer for initializing gamma, if None, skip gamma.
When the batch normalization layer is use instead of 'biases', or the next layer is linear, this can be
disabled since the scaling can be done by the next layer. see `Inception-ResNet-v2 <https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_resnet_v2.py>`__
moving_mean_init : initializer or None
The initializer for initializing moving mean, if None, skip moving mean.
moving_var_init : initializer or None
The initializer for initializing moving var, if None, skip moving var.
num_features: int
Number of features for input tensor. Useful to build layer if using BatchNorm1d, BatchNorm2d or BatchNorm3d,
but should be left as None if using BatchNorm. Default None.
data_format : str
channels_last 'channel_last' (default) or channels_first.
name : None or str
A unique layer name.
Examples
---------
With TensorLayer
>>> net = tl.layers.Input([None, 50, 50, 32], name='input')
>>> net = tl.layers.BatchNorm()(net)
Notes
-----
The :class:`BatchNorm` is universally suitable for 3D/4D/5D input in static model, but should not be used
in dynamic model where layer is built upon class initialization. So the argument 'num_features' should only be used
for subclasses :class:`BatchNorm1d`, :class:`BatchNorm2d` and :class:`BatchNorm3d`. All the three subclasses are
suitable under all kinds of conditions.
References
----------
- `Source <https://github.com/ry/tensorflow-resnet/blob/master/resnet.py>`__
- `stackoverflow <http://stackoverflow.com/questions/38312668/how-does-one-do-inference-with-batch-normalization-with-tensor-flow>`__
"""
def __init__(
self, decay=0.9, epsilon=0.00001, beta=None, gamma=None, moving_mean=None, moving_var=None, num_features=None,
data_format='channels_last', is_train=False
):
self.decay = decay
self.epsilon = epsilon
self.data_format = data_format
self.beta = beta
self.gamma = gamma
self.moving_mean = moving_mean
self.moving_var = moving_var
self.num_features = num_features
self.is_train = is_train
self.axes = None
if self.decay < 0.0 or 1.0 < self.decay:
raise ValueError("decay should be between 0 to 1")
def _get_param_shape(self, inputs_shape):
if self.data_format == 'channels_last':
axis = -1
elif self.data_format == 'channels_first':
axis = 1
else:
raise ValueError('data_format should be either %s or %s' % ('channels_last', 'channels_first'))
channels = inputs_shape[axis]
params_shape = [channels]
return params_shape
def _check_input_shape(self, inputs):
if inputs.ndim <= 1:
raise ValueError('expected input at least 2D, but got {}D input'.format(inputs.ndim))
def __call__(self, inputs):
self._check_input_shape(inputs)
self.channel_axis = len(inputs.shape) - 1 if self.data_format == 'channels_last' else 1
if self.axes is None:
self.axes = [i for i in range(len(inputs.shape)) if i != self.channel_axis]
mean, var = tf.nn.moments(inputs, self.axes, keepdims=False)
if self.is_train:
# update moving_mean and moving_var
self.moving_mean = moving_averages.assign_moving_average(
self.moving_mean, mean, self.decay, zero_debias=False
)
self.moving_var = moving_averages.assign_moving_average(self.moving_var, var, self.decay, zero_debias=False)
outputs = batch_normalization(inputs, mean, var, self.beta, self.gamma, self.epsilon, self.data_format)
else:
outputs = batch_normalization(
inputs, self.moving_mean, self.moving_var, self.beta, self.gamma, self.epsilon, self.data_format
)
return outputs
class GroupConv2D(object):
def __init__(self, strides, padding, data_format, dilations, out_channel, k_size, groups):
self.data_format, self.padding = preprocess_2d_format(data_format, padding)
self.strides = strides
self.dilations = dilations
self.groups = groups
if self.data_format == 'NHWC':
self.channels_axis = 3
else:
self.channels_axis = 1
def __call__(self, input, filters):
if self.groups == 1:
outputs = tf.nn.conv2d(
input=input,
filters=filters,
strides=self.strides,
padding=self.padding,
data_format=self.data_format,
dilations=self.dilations,
)
else:
inputgroups = tf.split(input, num_or_size_splits=self.groups, axis=self.channels_axis)
weightsgroups = tf.split(filters, num_or_size_splits=self.groups, axis=self.channels_axis)
convgroups = []
for i, k in zip(inputgroups, weightsgroups):
convgroups.append(
tf.nn.conv2d(
input=i,
filters=k,
strides=self.strides,
padding=self.padding,
data_format=self.data_format,
dilations=self.dilations,
)
)
outputs = tf.concat(axis=self.channels_axis, values=convgroups)
return outputs
class SeparableConv1D(object):
def __init__(self, stride, padding, data_format, dilations, out_channel, k_size, in_channel, depth_multiplier):
self.data_format, self.padding = preprocess_1d_format(data_format, padding)
if self.data_format == 'NWC':
self.spatial_start_dim = 1
self.strides = (1, stride, stride, 1)
self.data_format = 'NHWC'
else:
self.spatial_start_dim = 2
self.strides = (1, 1, stride, stride)
self.data_format = 'NCHW'
self.dilation_rate = (1, dilations)
def __call__(self, inputs, depthwise_filters, pointwise_filters):
inputs = tf.expand_dims(inputs, axis=self.spatial_start_dim)
depthwise_filters = tf.expand_dims(depthwise_filters, 0)
pointwise_filters = tf.expand_dims(pointwise_filters, 0)
outputs = tf.nn.separable_conv2d(
inputs, depthwise_filters, pointwise_filters, strides=self.strides, padding=self.padding,
dilations=self.dilation_rate, data_format=self.data_format
)
outputs = tf.squeeze(outputs, axis=self.spatial_start_dim)
return outputs
class SeparableConv2D(object):
def __init__(self, strides, padding, data_format, dilations, out_channel, k_size, in_channel, depth_multiplier):
self.data_format, self.padding = preprocess_2d_format(data_format, padding)
self.strides = strides
self.dilations = (dilations[2], dilations[2])
def __call__(self, inputs, depthwise_filters, pointwise_filters):
outputs = tf.nn.separable_conv2d(
inputs, depthwise_filters, pointwise_filters, strides=self.strides, padding=self.padding,
dilations=self.dilations, data_format=self.data_format
)
return outputs
class AdaptiveMeanPool1D(object):
def __init__(self, output_size, data_format):
self.data_format, _ = preprocess_1d_format(data_format, None)
self.output_size = output_size
def __call__(self, input):
if self.data_format == 'NWC':
n, w, c = input.shape
else:
n, c, w = input.shape
stride = floor(w / self.output_size)
kernel = w - (self.output_size - 1) * stride
output = tf.nn.avg_pool1d(input, ksize=kernel, strides=stride, data_format=self.data_format, padding='VALID')
return output
class AdaptiveMeanPool2D(object):
def __init__(self, output_size, data_format):
self.data_format, _ = preprocess_2d_format(data_format, None)
self.output_size = output_size
def __call__(self, inputs):
if self.data_format == 'NHWC':
n, h, w, c = inputs.shape
else:
n, c, h, w = inputs.shape
out_h, out_w = self.output_size
stride_h = floor(h / out_h)
kernel_h = h - (out_h - 1) * stride_h
stride_w = floor(w / out_w)
kernel_w = w - (out_w - 1) * stride_w
outputs = tf.nn.avg_pool2d(
inputs, ksize=(kernel_h, kernel_w), strides=(stride_h, stride_w), data_format=self.data_format,
padding='VALID'
)
return outputs
class AdaptiveMeanPool3D(object):
def __init__(self, output_size, data_format):
self.data_format, _ = preprocess_3d_format(data_format, None)
self.output_size = output_size
def __call__(self, inputs):
if self.data_format == 'NDHWC':
n, d, h, w, c = inputs.shape
else:
n, c, d, h, w = inputs.shape
out_d, out_h, out_w = self.output_size
stride_d = floor(d / out_d)
kernel_d = d - (out_d - 1) * stride_d
stride_h = floor(h / out_h)
kernel_h = h - (out_h - 1) * stride_h
stride_w = floor(w / out_w)
kernel_w = w - (out_w - 1) * stride_w
outputs = tf.nn.avg_pool3d(
inputs, ksize=(kernel_d, kernel_h, kernel_w), strides=(stride_d, stride_h, stride_w),
data_format=self.data_format, padding='VALID'
)
return outputs
class AdaptiveMaxPool1D(object):
def __init__(self, output_size, data_format):
self.data_format, _ = preprocess_1d_format(data_format, None)
self.output_size = output_size
def __call__(self, input):
if self.data_format == 'NWC':
n, w, c = input.shape
else:
n, c, w = input.shape
stride = floor(w / self.output_size)
kernel = w - (self.output_size - 1) * stride
output = tf.nn.max_pool1d(input, ksize=kernel, strides=stride, data_format=self.data_format, padding='VALID')
return output
class AdaptiveMaxPool2D(object):
def __init__(self, output_size, data_format):
self.data_format, _ = preprocess_2d_format(data_format, None)
self.output_size = output_size
def __call__(self, inputs):
if self.data_format == 'NHWC':
n, h, w, c = inputs.shape
else:
n, c, h, w = inputs.shape
out_h, out_w = self.output_size
stride_h = floor(h / out_h)
kernel_h = h - (out_h - 1) * stride_h
stride_w = floor(w / out_w)
kernel_w = w - (out_w - 1) * stride_w
outputs = tf.nn.max_pool2d(
inputs, ksize=(kernel_h, kernel_w), strides=(stride_h, stride_w), data_format=self.data_format,
padding='VALID'
)
return outputs
class AdaptiveMaxPool3D(object):
def __init__(self, output_size, data_format):
self.data_format, _ = preprocess_3d_format(data_format, None)
self.output_size = output_size
def __call__(self, inputs):
if self.data_format == 'NDHWC':
n, d, h, w, c = inputs.shape
else:
n, c, d, h, w = inputs.shape
out_d, out_h, out_w = self.output_size
stride_d = floor(d / out_d)
kernel_d = d - (out_d - 1) * stride_d
stride_h = floor(h / out_h)
kernel_h = h - (out_h - 1) * stride_h
stride_w = floor(w / out_w)
kernel_w = w - (out_w - 1) * stride_w
outputs = tf.nn.max_pool3d(
inputs, ksize=(kernel_d, kernel_h, kernel_w), strides=(stride_d, stride_h, stride_w),
data_format=self.data_format, padding='VALID'
)
return outputs
class BinaryConv2D(object):
def __init__(self, strides, padding, data_format, dilations, out_channel, k_size, in_channel):
self.data_format, self.padding = preprocess_2d_format(data_format, padding)
self.strides = strides
self.dilations = dilations
# @tf.RegisterGradient("TL_Sign_QuantizeGrad")
# def _quantize_grad(op, grad):
# """Clip and binarize tensor using the straight through estimator (STE) for the gradient."""
# return tf.clip_by_value(grad, -1, 1)
def quantize(self, x):
# ref: https://github.com/AngusG/tensorflow-xnor-bnn/blob/master/models/binary_net.py#L70
# https://github.com/itayhubara/BinaryNet.tf/blob/master/nnUtils.py
with tf.compat.v1.get_default_graph().gradient_override_map({"Sign": "TL_Sign_QuantizeGrad"}):
return tf.sign(x)
def __call__(self, inputs, filters):
filters = self.quantize(filters)
outputs = tf.nn.conv2d(
input=inputs, filters=filters, strides=self.strides, padding=self.padding, data_format=self.data_format,
dilations=self.dilations
)
return outputs
class DorefaConv2D(object):
def __init__(self, bitW, bitA, strides, padding, data_format, dilations, out_channel, k_size, in_channel):
self.data_format, self.padding = preprocess_2d_format(data_format, padding)
self.strides = strides
self.dilations = dilations
self.bitW = bitW
self.bitA = bitA
def _quantize_dorefa(self, x, k):
G = tf.compat.v1.get_default_graph()
n = float(2**k - 1)
with G.gradient_override_map({"Round": "Identity"}):
return tf.round(x * n) / n
def cabs(self, x):
return tf.minimum(1.0, tf.abs(x), name='cabs')
def quantize_active(self, x, bitA):
if bitA == 32:
return x
return self._quantize_dorefa(x, bitA)
def quantize_weight(self, x, bitW, force_quantization=False):
G = tf.compat.v1.get_default_graph()
if bitW == 32 and not force_quantization:
return x
if bitW == 1: # BWN
with G.gradient_override_map({"Sign": "Identity"}):
E = tf.stop_gradient(tf.reduce_mean(input_tensor=tf.abs(x)))
return tf.sign(x / E) * E
x = tf.clip_by_value(
x * 0.5 + 0.5, 0.0, 1.0
) # it seems as though most weights are within -1 to 1 region anyways
return 2 * self._quantize_dorefa(x, bitW) - 1
def __call__(self, inputs, filters):
inputs = self.quantize_active(self.cabs(inputs), self.bitA)
filters = self.quantize_weight(filters, self.bitW)
outputs = tf.nn.conv2d(
input=inputs,
filters=filters,
strides=self.strides,
padding=self.padding,
data_format=self.data_format,
dilations=self.dilations,
)
return outputs
class rnncell(object):
def __init__(self, weight_ih, weight_hh, bias_ih, bias_hh, act):
self.weight_ih = weight_ih
self.weight_hh = weight_hh
self.bias_ih = bias_ih
self.bias_hh = bias_hh
self.act_fn = tf.nn.relu if act == 'relu' else tf.nn.tanh
def __call__(self, input, h, c=None):
i2h = tf.matmul(input, self.weight_ih, transpose_b=True)
if self.bias_ih is not None:
i2h += self.bias_ih
h2h = tf.matmul(h, self.weight_hh, transpose_b=True)
if self.bias_hh is not None:
h2h += self.bias_hh
h = self.act_fn(i2h + h2h)
return h, h
class lstmcell(object):
def __init__(self, weight_ih, weight_hh, bias_ih, bias_hh, act=None):
self.weight_ih = weight_ih
self.weight_hh = weight_hh
self.bias_ih = bias_ih
self.bias_hh = bias_hh
self.gate_act_fn = tf.sigmoid
self.act_fn = tf.tanh
def __call__(self, input, h, c):
gates = tf.matmul(input, self.weight_ih, transpose_b=True)
if self.bias_ih is not None:
gates = gates + self.bias_ih
gates += tf.matmul(h, self.weight_hh, transpose_b=True)
if self.bias_hh is not None:
gates += self.bias_hh
gate_slices = tf.split(gates, num_or_size_splits=4, axis=-1)
i = self.gate_act_fn(gate_slices[0])
f = self.gate_act_fn(gate_slices[1])
o = self.gate_act_fn(gate_slices[3])
c = f * c + i * self.act_fn(gate_slices[2])
h = o * self.act_fn(c)
return h, h, c
class grucell(object):
def __init__(self, weight_ih, weight_hh, bias_ih, bias_hh, act=None):
self.weight_ih = weight_ih
self.weight_hh = weight_hh
self.bias_ih = bias_ih
self.bias_hh = bias_hh
self.gate_act_fn = tf.sigmoid
self.act_fn = tf.tanh
def __call__(self, input, h, c=None):
x_gates = tf.matmul(input, self.weight_ih, transpose_b=True)
if self.bias_ih is not None:
x_gates = x_gates + self.bias_ih
h_gates = tf.matmul(h, self.weight_hh, transpose_b=True)
if self.bias_hh is not None:
h_gates = h_gates + self.bias_hh
x_r, x_z, x_c = tf.split(x_gates, num_or_size_splits=3, axis=-1)
h_r, h_z, h_c = tf.split(h_gates, num_or_size_splits=3, axis=-1)
r = self.gate_act_fn(x_r + h_r)
z = self.gate_act_fn(x_r + h_z)
c = self.act_fn(x_c + r * h_c)
h = (h - c) * z + c
return h, h
class rnnbase(object):
def __init__(
self,
mode,
input_size,
hidden_size,
num_layers,
bias,
batch_first,
dropout,
bidirectional,
is_train,
weights_fw,
weights_bw,
bias_fw,
bias_bw,
):
self.mode = mode
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.bias = bias
self.batch_first = batch_first
self.dropout = float(dropout)
self.train = is_train
if not 0 <= dropout < 1:
raise ValueError("dropout should be a number in range [0, 1).")
if dropout > 0 and num_layers == 1:
raise ValueError(
"dropout option adds dropout after all but last "
"recurrent layer, so non-zero dropout expects "
"num_layers greater than 1, but got dropout={} and "
"num_layers={}".format(dropout, num_layers)
)
self.bidirect = 2 if bidirectional else 1
self.weights_fw = weights_fw
self.bias_fw = bias_fw
self.weights_bw = weights_bw
self.bias_bw = bias_bw
# stdv = 1.0 / np.sqrt(self.hidden_size)
# _init = tf.random_uniform_initializer(minval=-stdv, maxval=stdv)
self.act_fn = None
if mode == 'LSTM':
# gate_size = 4 * hidden_size
self.rnn_cell = lstmcell
elif mode == 'GRU':
# gate_size = 3 * hidden_size
self.rnn_cell = grucell
elif mode == 'RNN_TANH':
# gate_size = hidden_size
self.rnn_cell = rnncell
self.act_fn = 'tanh'
elif mode == 'RNN_RELU':
# gate_size = hidden_size
self.rnn_cell = rnncell
self.act_fn = 'relu'
# for layer in range(num_layers):
# for direction in range(self.bidirect):
# layer_input_size = input_size if layer==0 else hidden_size*self.bidirect
# if direction == 0:
# self.w_ih = tf.Variable(initial_value= _init(shape=(gate_size, layer_input_size)),name = 'weight_ih_l'+str(layer), trainable=True)
# self.w_hh = tf.Variable(initial_value=_init(shape=(gate_size, hidden_size)),
# name='weight_hh_l'+str(layer), trainable=True)
# # self.w_ih = self.weights_init('weight_ih_l'+str(layer), shape = (gate_size, layer_input_size), init = _init)
# # self.w_hh = self.weights_init('weight_ih_l' + str(layer), shape=(gate_size, hidden_size),
# # init=_init)
# self.weights_fw.append(self.w_ih)
# self.weights_fw.append(self.w_hh)
# if bias:
# self.b_ih = tf.Variable(initial_value=_init(shape=(gate_size,)),
# name='bias_ih_l'+str(layer), trainable=True)
# self.b_hh = tf.Variable(initial_value=_init(shape=(gate_size,)),
# name='bias_hh_l'+str(layer), trainable=True)
# # self.b_ih = self.weights_init('bias_ih_l'+str(layer), shape=(gate_size,), init=_init)
# # self.b_hh = self.weights_init('bias_hh_l'+str(layer), shape=(gate_size,), init=_init)
# self.bias_fw.append(self.b_ih)
# self.bias_fw.append(self.b_hh)
# else:
# self.w_ih = tf.Variable(initial_value= _init(shape=(gate_size, layer_input_size)),name = 'weight_ih_l'+str(layer)+'_reverse', trainable=True)
# self.w_hh = tf.Variable(initial_value=_init(shape=(gate_size, hidden_size)),
# name='weight_hh_l'+str(layer)+'_reverse', trainable=True)
# # self.w_ih = self.weights_init('weight_ih_l'+str(layer)+'_reverse', shape = (gate_size, layer_input_size), init = _init)
# # self.w_hh = self.weights_init('weight_hh_l'+str(layer)+'_reverse', shape=(gate_size, hidden_size),
# # init=_init)
# self.weights_bw.append(self.w_ih)
# self.weights_bw.append(self.w_hh)
# if bias:
# self.b_ih = tf.Variable(initial_value=_init(shape=(gate_size,)),
# name='bias_ih_l'+str(layer)+'_reverse', trainable=True)
# self.b_hh = tf.Variable(initial_value=_init(shape=(gate_size,)),
# name='bias_hh_l'+str(layer)+'_reverse', trainable=True)
# # self.b_ih = self.weights_init('bias_ih_l'+str(layer)+'_reverse', shape=(gate_size,), init=_init)
# # self.b_hh = self.weights_init('bias_hh_l'+str(layer)+'_reverse', shape=(gate_size,), init=_init)
# self.bias_bw.append(self.b_ih)
# self.bias_bw.append(self.b_hh)
def _bi_rnn_forward(self, x, h, c=None):
time_step, batch_size, input_size = x.shape
h_out = []
c_out = []
y = []
pre_layer = x
for i in range(self.num_layers):
weight_ih_fw = self.weights_fw[2 * i]
weight_hh_fw = self.weights_fw[2 * i + 1]
weight_ih_bw = self.weights_bw[2 * i]
weight_hh_bw = self.weights_bw[2 * i + 1]
if self.bias:
bias_ih_fw = self.bias_fw[2 * i]
bias_hh_fw = self.bias_fw[2 * i + 1]
bias_ih_bw = self.bias_bw[2 * i]
bias_hh_bw = self.bias_bw[2 * i + 1]
else:
bias_ih_fw = None
bias_hh_fw = None
bias_ih_bw = None
bias_hh_bw = None
h_i_fw = h[i, :, :]
h_i_bw = h[i + 1, :, :]
if i != 0 and self.train:
pre_layer = tf.nn.dropout(pre_layer, rate=self.dropout)
if c is not None:
c_i_fw = c[i, :, :]
c_i_bw = c[i + 1, :, :]
for j in range(time_step):
input = pre_layer[j, :, :]
cell_fw = self.rnn_cell(weight_ih_fw, weight_hh_fw, bias_ih_fw, bias_hh_fw, self.act_fn)
cell_bw = self.rnn_cell(weight_ih_bw, weight_hh_bw, bias_ih_bw, bias_hh_bw, self.act_fn)
bw_input = tf.reverse(input, axis=[0])
step_out_fw, h_i_fw, c_i_fw = cell_fw(input, h_i_fw, c_i_fw)
step_out_bw, h_i_bw, c_i_bw = cell_bw(bw_input, h_i_bw, c_i_bw)
step_out_bw = tf.reverse(step_out_bw, axis=[0])
step_out = tf.concat([step_out_fw, step_out_bw], axis=-1)
y.append(step_out)
h_out.append(h_i_fw)
h_out.append(h_i_bw)
c_out.append(c_i_fw)
c_out.append(c_i_bw)
pre_layer = tf.stack(y)
y = []
else:
for j in range(time_step):
input = pre_layer[j, :, :]
cell_fw = self.rnn_cell(weight_ih_fw, weight_hh_fw, bias_ih_fw, bias_hh_fw, self.act_fn)
cell_bw = self.rnn_cell(weight_ih_bw, weight_hh_bw, bias_ih_bw, bias_hh_bw, self.act_fn)
bw_input = tf.reverse(input, axis=[0])
step_out_fw, h_i_fw = cell_fw(input, h_i_fw)
step_out_bw, h_i_bw = cell_bw(bw_input, h_i_bw)
step_out_bw = tf.reverse(step_out_bw, axis=[0])
step_out = tf.concat([step_out_fw, step_out_bw], axis=-1)
y.append(step_out)
h_out.append(h_i_fw)
h_out.append(h_i_bw)
pre_layer = tf.stack(y)
y = []
h_out = tf.stack(h_out)
c_out = tf.stack(c_out) if c is not None else None
return pre_layer, h_out, c_out
def _rnn_forward(self, x, h, c=None):
pre_layer = x
h_out = []
c_out = []
y = []
time_step, batch_size, input_size = x.shape
for i in range(self.num_layers):
weight_ih = self.weights_fw[2 * i]
weight_hh = self.weights_fw[2 * i + 1]
if self.bias:
bias_ih = self.bias_fw[2 * i]
bias_hh = self.bias_fw[2 * i + 1]
else:
bias_ih = None
bias_hh = None
h_i = h[i, :, :]
if i != 0 and self.train:
pre_layer = tf.nn.dropout(pre_layer, rate=self.dropout)
if c is not None:
c_i = c[i, :, :]
for j in range(time_step):
input = pre_layer[j, :, :]
cell = self.rnn_cell(weight_ih, weight_hh, bias_ih, bias_hh, self.act_fn)
step_out, h_i, c_i = cell(input, h_i, c_i)
y.append(step_out)
h_out.append(h_i)
c_out.append(c_i)
pre_layer = tf.stack(y)
y = []
else:
for j in range(time_step):
input = pre_layer[j, :, :]
cell = self.rnn_cell(weight_hh, weight_ih, bias_ih, bias_hh, self.act_fn)
step_out, h_i = cell(input, h_i)
y.append(step_out)
h_out.append(h_i)
pre_layer = tf.stack(y)
y = []
h_out = tf.stack(h_out)
c_out = tf.stack(c_out) if c is not None else None
return pre_layer, h_out, c_out
def check_input(self, input_shape):
if len(input_shape) != 3:
raise ValueError("input must have 3 dimensions. But got {}.".format(len(input_shape)))
if self.input_size != input_shape[-1]:
raise ValueError(
"The last dimension of input should be equal to input_size {}.But got {}".format(
self.input_size, input_shape[-1]
)
)
def check_hidden(self, h, batch_size):
expected_hidden_size = (self.num_layers * self.bidirect, batch_size, self.hidden_size)
if h.shape != expected_hidden_size:
raise ValueError('Expected hidden size {}, got {}.'.format(expected_hidden_size, h.shape))
def __call__(self, input, states):
if self.batch_first:
input = tf.transpose(input, perm=(1, 0, 2))
input_dtype = input.dtype
input_shape = input.shape
time_step, batch_size, input_size = input_shape
self.check_input(input_shape)
if self.mode == "LSTM":
if states is not None:
h, c = states
self.check_hidden(h, batch_size)
self.check_hidden(c, batch_size)
else:
h = tf.zeros(shape=(self.num_layers * self.bidirect, batch_size, self.hidden_size), dtype=input_dtype)
c = tf.zeros(shape=(self.num_layers * self.bidirect, batch_size, self.hidden_size), dtype=input_dtype)
if self.bidirect == 1:
y, new_h, new_c = self._rnn_forward(input, h, c)
else:
y, new_h, new_c = self._bi_rnn_forward(input, h, c)
new_states = (new_h, new_c)
else:
if states is not None:
h = states
self.check_hidden(h, batch_size)
else:
h = tf.zeros(shape=(self.num_layers * self.bidirect, batch_size, self.hidden_size), dtype=input_dtype)
if self.bidirect == 1:
y, new_h, _ = self._rnn_forward(input, h)
else:
y, new_h, _ = self._bi_rnn_forward(input, h)
new_states = new_h
if self.batch_first:
y = tf.transpose(y, perm=(1, 0, 2))
return y, new_states