forked from TensorLayer/tensorlayer3
56 lines
1.4 KiB
Python
56 lines
1.4 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
import os
|
|
import unittest
|
|
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
|
|
|
import numpy as np
|
|
|
|
import tensorflow as tf
|
|
import tensorlayer as tl
|
|
|
|
from tests.utils import CustomTestCase
|
|
|
|
|
|
class Util_Predict_Test(CustomTestCase):
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.x1 = tf.placeholder(tf.float32, [None, 5, 5, 3])
|
|
cls.x2 = tf.placeholder(tf.float32, [8, 5, 5, 3])
|
|
cls.X1 = np.ones([127, 5, 5, 3])
|
|
cls.X2 = np.ones([7, 5, 5, 3])
|
|
cls.batch_size = 8
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
tf.reset_default_graph()
|
|
|
|
def test_case1(self):
|
|
with self.assertNotRaises(Exception):
|
|
with tf.Session() as sess:
|
|
n = tl.layers.InputLayer(self.x1)
|
|
y = n.outputs
|
|
y_op = tf.nn.softmax(y)
|
|
tl.utils.predict(sess, n, self.X1, self.x1, y_op, batch_size=self.batch_size)
|
|
sess.close()
|
|
|
|
def test_case2(self):
|
|
with self.assertRaises(Exception):
|
|
with tf.Session() as sess:
|
|
n = tl.layers.InputLayer(self.x2)
|
|
y = n.outputs
|
|
y_op = tf.nn.softmax(y)
|
|
tl.utils.predict(sess, n, self.X2, self.x2, y_op, batch_size=self.batch_size)
|
|
sess.close()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
tf.logging.set_verbosity(tf.logging.DEBUG)
|
|
tl.logging.set_verbosity(tl.logging.DEBUG)
|
|
|
|
unittest.main()
|