tensorlayer3/tests/pending/test_mnist_simple.py

94 lines
3.2 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import unittest
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
import tensorlayer as tl
from tests.utils import CustomTestCase
class Simple_MNIST_Test(CustomTestCase):
@classmethod
def setUpClass(cls):
# define placeholders
cls.x = tf.placeholder(tf.float32, shape=[None, 784], name='x')
cls.y_ = tf.placeholder(tf.int64, shape=[None], name='y_')
# define the network
network = tl.layers.InputLayer(cls.x, name='input')
network = tl.layers.DropoutLayer(network, keep=0.8, name='drop1')
network = tl.layers.DenseLayer(network, n_units=100, act=tf.nn.relu, name='relu1')
network = tl.layers.DropoutLayer(network, keep=0.8, name='drop2')
network = tl.layers.DenseLayer(network, n_units=100, act=tf.nn.relu, name='relu2')
network = tl.layers.DropoutLayer(network, keep=0.8, name='drop3')
# the softmax is implemented internally in tl.cost.cross_entropy(y, y_) to
# speed up computation, so we use identity here.
# see tf.ops.sparse_softmax_cross_entropy_with_logits()
cls.network = tl.layers.DenseLayer(network, n_units=10, name='output')
# define cost function and metric.
y = cls.network.outputs
cls.cost = tl.cost.cross_entropy(y, cls.y_, name='cost')
correct_prediction = tf.equal(tf.argmax(y, 1), cls.y_)
cls.acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# y_op = tf.argmax(tf.ops.softmax(y), 1)
# define the optimizer
train_params = cls.network.trainable_weights
cls.train_op = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(cls.cost, var_list=train_params)
@classmethod
def tearDownClass(cls):
tf.reset_default_graph()
def test_reuse_vgg(self):
# prepare data
X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_mnist_dataset(shape=(-1, 784))
# for fashion_MNIST dataset test
# X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_fashion_mnist_dataset(shape=(-1, 784))
with self.assertNotRaises(Exception):
with tf.Session() as sess:
# initialize all variables in the session
tl.layers.initialize_global_variables(sess)
# print network information
self.network.print_params()
self.network.print_layers()
# train the network
tl.utils.fit(
sess, self.network, self.train_op, self.cost, X_train, y_train, self.x, self.y_, acc=self.acc,
batch_size=500, n_epoch=1, print_freq=1, X_val=X_val, y_val=y_val, eval_train=False
)
# evaluation
tl.utils.test(
sess, self.network, self.acc, X_test, y_test, self.x, self.y_, batch_size=None, cost=self.cost
)
# save the network to .npz file
tl.files.save_npz(self.network.all_params, name='model.npz')
sess.close()
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.DEBUG)
tl.logging.set_verbosity(tl.logging.DEBUG)
unittest.main()