tensorlayer3/tests/pending/test_logging_hyperdash.py

142 lines
4.3 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import unittest
import time
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
import tensorlayer as tl
from tensorlayer.logging.contrib import hyperdash as hd
from tests.utils import CustomTestCase
class TL_Logger_Test(CustomTestCase):
@classmethod
def setUpClass(cls):
cls.apikey = os.getenv('HYPERDASH_APIKEY', "test_api_key")
def test_apikey_unset(self):
with self.assertRaises(ValueError):
hd.HyperDashHandler.reset_apikey()
hd.HyperDashHandler.get_apikey()
def test_apikey_set(self):
with self.assertNotRaises(ValueError):
hd.HyperDashHandler.set_apikey(self.apikey)
hd.HyperDashHandler.get_apikey()
def test_monitor(self):
with self.assertNotRaises(Exception):
hd.HyperDashHandler.set_apikey(self.apikey)
@hd.monitor("TRAVIS 1 - dogs vs. cats")
def train_dogs_vs_cats(exp=None):
# Record the value of hyperparameter gamma for this experiment
lr = exp.param("learning rate", 0.005)
tl.logging.debug("Learning Rate: %f" % lr)
for epoch, accuracy in enumerate([10, 30, 50, 70, 80, 90, 95, 100]):
tl.logging.debug("Epoch %d - Accuracy %d%%" % (epoch + 1, accuracy))
# Record a numerical performance metric
exp.metric(name="accuracy", value=accuracy)
time.sleep(0.1)
train_dogs_vs_cats()
def test_monitor_variant(self):
with self.assertNotRaises(Exception):
@hd.monitor("TRAVIS 2 - dogs vs. cats", api_key=self.apikey)
def train_dogs_vs_cats(exp=None):
# Record the value of hyperparameter gamma for this experiment
lr = exp.param("learning rate", 0.005)
tl.logging.debug("Learning Rate: %f" % lr)
for epoch, accuracy in enumerate([10, 30, 50, 70, 80, 90, 95, 100]):
tl.logging.debug("Epoch %d - Accuracy %d%%" % (epoch + 1, accuracy))
# Record a numerical performance metric
exp.metric(name="accuracy", value=accuracy)
time.sleep(0.1)
train_dogs_vs_cats()
def test_Experiment(self):
hd.HyperDashHandler.set_apikey(self.apikey)
with self.assertNotRaises(Exception):
def train_dogs_vs_cats():
# Create an experiment with a model name, then autostart
exp = hd.Experiment("TRAVIS 3 - dogs vs. cats")
# Record the value of hyperparameter gamma for this experiment
lr = exp.param("learning rate", 0.005)
tl.logging.debug("Learning Rate: %f" % lr)
for epoch, accuracy in enumerate([10, 30, 50, 70, 80, 90, 95, 100]):
tl.logging.debug("Epoch %d - Accuracy %d%%" % (epoch + 1, accuracy))
# Record a numerical performance metric
exp.metric(name="accuracy", value=accuracy)
time.sleep(0.1)
# Cleanup and mark that the experiment successfully completed
exp.end()
train_dogs_vs_cats()
def test_Experiment_variant(self):
with self.assertNotRaises(Exception):
def train_dogs_vs_cats():
# Create an experiment with a model name, then autostart
exp = hd.Experiment("TRAVIS 4 - dogs vs. cats", api_key=self.apikey)
# Record the value of hyperparameter gamma for this experiment
lr = exp.param("learning rate", 0.005)
tl.logging.debug("Learning Rate: %f" % lr)
for epoch, accuracy in enumerate([10, 30, 50, 70, 80, 90, 95, 100]):
tl.logging.debug("Epoch %d - Accuracy %d%%" % (epoch + 1, accuracy))
# Record a numerical performance metric
exp.metric(name="accuracy", value=accuracy)
time.sleep(0.1)
# Cleanup and mark that the experiment successfully completed
exp.end()
train_dogs_vs_cats()
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.DEBUG)
tl.logging.set_verbosity(tl.logging.DEBUG)
unittest.main()