tensorlayer3/tests/pending/test_layers_super_resolutio...

69 lines
2.1 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import unittest
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
import tensorlayer as tl
from tests.utils import CustomTestCase
class Layer_Super_Resolution_Test(CustomTestCase):
@classmethod
def setUpClass(cls):
t_signal = tf.placeholder('float32', [10, 100, 4], name='x')
n = tl.layers.InputLayer(t_signal, name='in')
n = tl.layers.Conv1d(n, n_filter=32, filter_size=3, stride=1, padding='SAME', name='conv1d')
net1 = tl.layers.SubpixelConv1d(n, scale=2, name='subpixel')
net1.print_layers()
net1.print_params(False)
cls.net1_shape = net1.outputs.get_shape().as_list()
cls.net1_layers = net1.all_layers
cls.net1_params = net1.all_params
cls.net1_n_params = net1.count_params()
## 2D
x = tf.placeholder('float32', [10, 100, 100, 3], name='x')
n = tl.layers.InputLayer(x, name='in')
n = tl.layers.Conv2d(n, n_filter=32, filter_size=(3, 2), strides=(1, 1), padding='SAME', name='conv2d')
net2 = tl.layers.SubpixelConv2d(n, scale=2, name='subpixel2d')
net2.print_layers()
net2.print_params(False)
cls.net2_shape = net2.outputs.get_shape().as_list()
cls.net2_layers = net2.all_layers
cls.net2_params = net2.all_params
cls.net2_n_params = net2.count_params()
@classmethod
def tearDownClass(cls):
tf.reset_default_graph()
def test_net1_shape(self):
self.assertEqual(self.net1_shape, [10, 200, 16])
self.assertEqual(len(self.net1_layers), 3)
self.assertEqual(len(self.net1_params), 2)
self.assertEqual(self.net1_n_params, 416)
def test_net2_shape(self):
self.assertEqual(self.net2_shape, [10, 200, 200, 8])
self.assertEqual(len(self.net2_layers), 3)
self.assertEqual(len(self.net2_params), 2)
self.assertEqual(self.net2_n_params, 608)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.DEBUG)
tl.logging.set_verbosity(tl.logging.DEBUG)
unittest.main()