tensorlayer3/tests/pending/test_layers_spatial_transfo...

87 lines
2.7 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import unittest
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
import tensorlayer as tl
from tests.utils import CustomTestCase
def model(x, is_train, reuse):
with tf.variable_scope("STN", reuse=reuse):
nin = tl.layers.InputLayer(x, name='in')
## 1. Localisation network
# use MLP as the localisation net
nt = tl.layers.FlattenLayer(nin, name='flatten')
nt = tl.layers.DenseLayer(nt, n_units=20, act=tf.nn.tanh, name='dense1')
nt = tl.layers.DropoutLayer(nt, keep=0.8, is_fix=True, is_train=is_train, name='drop1')
# you can also use CNN instead for MLP as the localisation net
# nt = Conv2d(nin, 16, (3, 3), (2, 2), act=tf.ops.relu, padding='SAME', name='tc1')
# nt = Conv2d(nt, 8, (3, 3), (2, 2), act=tf.ops.relu, padding='SAME', name='tc2')
## 2. Spatial transformer module (sampler)
n = tl.layers.SpatialTransformer2dAffineLayer(nin, theta_layer=nt, out_size=(40, 40), name='spatial')
s = n
## 3. Classifier
n = tl.layers.Conv2d(
n, n_filter=16, filter_size=(3, 3), strides=(2, 2), act=tf.nn.relu, padding='SAME', name='conv1'
)
n = tl.layers.Conv2d(
n, n_filter=16, filter_size=(3, 3), strides=(2, 2), act=tf.nn.relu, padding='SAME', name='conv2'
)
n = tl.layers.FlattenLayer(n, name='flatten2')
n = tl.layers.DenseLayer(n, n_units=1024, act=tf.nn.relu, name='out1')
n = tl.layers.DenseLayer(n, n_units=10, name='out2')
return n, s
class Layer_Spatial_Transformer_Test(CustomTestCase):
@classmethod
def setUpClass(cls):
cls.x = tf.placeholder(tf.float32, shape=[None, 28, 28, 1])
net, s = model(cls.x, is_train=True, reuse=False)
net.print_layers()
net.print_params(False)
cls.s_shape = s.outputs.get_shape().as_list()
cls.net_layers = net.all_layers
cls.net_params = net.all_params
cls.net_n_params = net.count_params()
@classmethod
def tearDownClass(cls):
tf.reset_default_graph()
def test_reuse(self):
with self.assertNotRaises(Exception):
_, _ = model(self.x, is_train=True, reuse=True)
def test_net_shape(self):
self.assertEqual(self.s_shape[1:], [40, 40, 1])
def test_net_layers(self):
self.assertEqual(len(self.net_layers), 10)
def test_net_params(self):
self.assertEqual(len(self.net_params), 12)
def test_net_n_params(self):
self.assertEqual(self.net_n_params, 1667980)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.DEBUG)
tl.logging.set_verbosity(tl.logging.DEBUG)
unittest.main()