forked from TensorLayer/tensorlayer3
50 lines
1.1 KiB
Python
50 lines
1.1 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
import os
|
|
import unittest
|
|
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
|
|
|
import tensorlayer as tl
|
|
|
|
from tests.utils import CustomTestCase
|
|
|
|
|
|
class Layer_Scale_Test(CustomTestCase):
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
pass
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
pass
|
|
|
|
def test_scale(self):
|
|
|
|
class model(tl.layers.Module):
|
|
def __init__(self):
|
|
super(model, self).__init__()
|
|
self.dense = tl.layers.Dense(n_units=10)
|
|
self.scalelayer = tl.layers.Scale(init_scale=0.5)
|
|
|
|
def forward(self, inputs):
|
|
output1 = self.dense(inputs)
|
|
output2 = self.scalelayer(output1)
|
|
return output1, output2
|
|
|
|
input = tl.layers.Input((8, 3), init=tl.initializers.random_normal())
|
|
net = model()
|
|
net.set_train()
|
|
dout, fout = net(input)
|
|
|
|
for i in range(len(dout)):
|
|
for j in range(len(dout[i])):
|
|
self.assertEqual(dout[i][j].numpy() * 0.5, fout[i][j].numpy())
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
unittest.main()
|