forked from TensorLayer/tensorlayer3
140 lines
13 KiB
ReStructuredText
140 lines
13 KiB
ReStructuredText
.. _example:
|
|
|
|
============
|
|
Examples
|
|
============
|
|
|
|
We list some examples here, but more tutorials and applications can be found in `Github examples <https://github.com/tensorlayer/tensorlayer/tree/master/examples>`__ and `Awesome-TensorLayer <https://github.com/tensorlayer/awesome-tensorlayer>`_.
|
|
|
|
Commonly used dataset and pretrained models
|
|
===========================================
|
|
|
|
- MNIST, see `MNIST <http://yann.lecun.com/exdb/mnist/>`__.
|
|
- CIFAR10, see `CIFAR10 <http://www.cs.toronto.edu/~kriz/cifar.html>`__.
|
|
|
|
- YOLOv4 Pretrained Model, see `YOLOv4 <https://pan.baidu.com/s/1MC1dmEwpxsdgHO1MZ8fYRQ>`__. password: idsz
|
|
- VGG16 Pretrained Model, see `VGG16 <https://pan.baidu.com/s/1s7jlzXftZ07n1gIk1zOQOQ>`__. password: t36u
|
|
- VGG19 Pretrained Model, see `VGG19 <https://pan.baidu.com/s/13XZ1LxqZf70qihxp5Uxhdg>`__. password: rb8w
|
|
- ResNet50 Pretrained Model, see `ResNet50 <https://pan.baidu.com/s/1zgwzWXP4uhxljEPdJWWxQA>`__. password: 3nui
|
|
|
|
Basics
|
|
============
|
|
|
|
- Multi-layer perceptron (MNIST), simple usage and supports multiple backends. Classification task, see `tutorial_mnist_simple.py <https://github.com/tensorlayer/tensorlayer/blob/master/examples/basic_tutorials/tutorial_mnist_simple.py>`__.
|
|
- Multi-layer perceptron (MNIST), mix of tensorlayer and tensorflow. Classification with dropout using iterator, see `tutorial_mnist_mlp_tensorflow_backend.py <https://github.com/tensorlayer/tensorlayer/blob/master/examples/basic_tutorials/tutorial_mnist_mlp_tensorflow_backend.py>`__.
|
|
- Multi-layer perceptron (MNIST), mix of tensorlayer and mindspore. Classification task, see `tutorial_mnist_mlp_mindspore_backend.py <https://github.com/tensorlayer/tensorlayer/blob/master/examples/basic_tutorials/tutorial_mnist_mlp_mindspore_backend.py>`__.
|
|
- Multi-layer perceptron (MNIST), mix of tensorlayer and paddlepaddle. Classification task, see `tutorial_mnist_mlp_paddlepaddle_backend.py <https://github.com/tensorlayer/tensorlayer/blob/master/examples/basic_tutorials/tutorial_mnist_mlp_paddlepaddle_backend.py>`__.
|
|
|
|
- Convolutional Network (CIFAR-10). mix of tensorlayer and tensorflow. Classification task, see `tutorial_cifar10_cnn_tensorflow_backend.py <https://github.com/tensorlayer/tensorlayer/blob/master/examples/basic_tutorials/tutorial_cifar10_cnn_tensorflow_backend.py>`_.
|
|
- Convolutional Network (CIFAR-10). mix of tensorlayer and mindspore. Classification task, see `tutorial_cifar10_cnn_mindspore_backend.py <https://github.com/tensorlayer/tensorlayer/blob/master/examples/basic_tutorials/tutorial_cifar10_cnn_mindspore_backend.py>`_.
|
|
|
|
- TensorFlow dataset API for object detection see `here <https://github.com/tensorlayer/tensorlayer/blob/master/examples/data_process/tutorial_tf_dataset_voc.py>`__.
|
|
- Data augmentation with TFRecord. Effective way to load and pre-process data, see `tutorial_tfrecord*.py <https://github.com/tensorlayer/tensorlayer/tree/master/examples/data_process>`__ and `tutorial_cifar10_tfrecord.py <https://github.com/tensorlayer/tensorlayer/blob/master/examples/basic_tutorials/data_process/tutorial_tfrecord.py>`__.
|
|
- Data augmentation with TensorLayer. See `tutorial_fast_affine_transform.py <https://github.com/tensorlayer/tensorlayer/blob/master/examples/data_process/tutorial_fast_affine_transform.py>`__ (for quick test only).
|
|
|
|
Pretrained Models
|
|
==================
|
|
|
|
- VGG 16 (ImageNet). Classification task, see `pretrained_vgg16 <https://github.com/tensorlayer/tensorlayer/blob/master/examples/model_zoo/pretrained_vgg16.py>`__.
|
|
- VGG 19 (ImageNet). Classification task, see `tutorial_models_vgg19.py <https://github.com/tensorlayer/tensorlayer/blob/master/examples/pretrained_cnn/tutorial_vgg19.py>`__.
|
|
- YOLOv4 (MS-COCO). Object Detection, see `pretrained_yolov4.py <https://github.com/tensorlayer/tensorlayer/blob/master/examples/model_zoo/pretrained_yolov4.py>`__.
|
|
- SqueezeNet (ImageNet, Based on TensroLayer2.0). Model compression, see `tutorial_models_squeezenetv1.py <https://github.com/tensorlayer/tensorlayer/blob/master/examples/pretrained_cnn/tutorial_models_squeezenetv1.py>`__.
|
|
- MobileNet (ImageNet, Based on TensroLayer2.0). Model compression, see `tutorial_models_mobilenetv1.py <https://github.com/tensorlayer/tensorlayer/blob/master/examples/pretrained_cnn/tutorial_models_mobilenetv1.py>`__.
|
|
- All pretrained models in `pretrained-models <https://github.com/tensorlayer/pretrained-models>`__.
|
|
|
|
Vision
|
|
==================
|
|
Warning:These examples below only support Tensorlayer 2.0. Tensorlayer 3.0 is under development.
|
|
- Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization, see `examples <https://github.com/tensorlayer/adaptive-style-transfer>`__.
|
|
- ArcFace: Additive Angular Margin Loss for Deep Face Recognition, see `InsignFace <https://github.com/auroua/InsightFace_TF>`__.
|
|
- BinaryNet. Model compression, see `mnist <https://github.com/tensorlayer/tensorlayer/blob/master/examples/quantized_net/tutorial_binarynet_mnist_cnn.py>`__ `cifar10 <https://github.com/tensorlayer/tensorlayer/blob/master/examples/quantized_net/tutorial_binarynet_cifar10_tfrecord.py>`__.
|
|
- Ternary Weight Network. Model compression, see `mnist <https://github.com/tensorlayer/tensorlayer/blob/master/examples/quantized_net/tutorial_ternaryweight_mnist_cnn.py>`__ `cifar10 <https://github.com/tensorlayer/tensorlayer/blob/master/examples/quantized_net/tutorial_ternaryweight_cifar10_tfrecord.py>`__.
|
|
- DoReFa-Net. Model compression, see `mnist <https://github.com/tensorlayer/tensorlayer/blob/master/examples/quantized_net/tutorial_dorefanet_mnist_cnn.py>`__ `cifar10 <https://github.com/tensorlayer/tensorlayer/blob/master/examples/quantized_net/tutorial_dorefanet_cifar10_tfrecord.py>`__.
|
|
- QuanCNN. Model compression, sees `mnist <https://github.com/XJTUI-AIR-FALCON/tensorlayer/blob/master/examples/quantized_net/tutorial_quanconv_mnist.py>`__ `cifar10 <https://github.com/XJTUI-AIR-FALCON/tensorlayer/blob/master/examples/quantized_net/tutorial_quanconv_cifar10.py>`__.
|
|
- Wide ResNet (CIFAR) by `ritchieng <https://github.com/ritchieng/wideresnet-tensorlayer>`__.
|
|
- `Spatial Transformer Networks <https://arxiv.org/abs/1506.02025>`__ by `zsdonghao <https://github.com/zsdonghao/Spatial-Transformer-Nets>`__.
|
|
- `U-Net for brain tumor segmentation <https://github.com/zsdonghao/u-net-brain-tumor>`__ by `zsdonghao <https://github.com/zsdonghao/u-net-brain-tumor>`__.
|
|
- Variational Autoencoder (VAE) for (CelebA) by `yzwxx <https://github.com/yzwxx/vae-celebA>`__.
|
|
- Variational Autoencoder (VAE) for (MNIST) by `BUPTLdy <https://github.com/BUPTLdy/tl-vae>`__.
|
|
- Image Captioning - Reimplementation of Google's `im2txt <https://github.com/tensorflow/models/tree/master/research/im2txt>`__ by `zsdonghao <https://github.com/zsdonghao/Image-Captioning>`__.
|
|
|
|
Adversarial Learning
|
|
========================
|
|
Warning:These examples below only support Tensorlayer 2.0. Tensorlayer 3.0 is under development.
|
|
- DCGAN (CelebA). Generating images by `Deep Convolutional Generative Adversarial Networks <http://arxiv.org/abs/1511.06434>`__ by `zsdonghao <https://github.com/tensorlayer/dcgan>`__.
|
|
- `Generative Adversarial Text to Image Synthesis <https://github.com/zsdonghao/text-to-image>`__ by `zsdonghao <https://github.com/zsdonghao/text-to-image>`__.
|
|
- `Unsupervised Image to Image Translation with Generative Adversarial Networks <https://github.com/zsdonghao/Unsup-Im2Im>`__ by `zsdonghao <https://github.com/zsdonghao/Unsup-Im2Im>`__.
|
|
- `Improved CycleGAN <https://github.com/luoxier/CycleGAN_Tensorlayer>`__ with resize-convolution by `luoxier <https://github.com/luoxier/CycleGAN_Tensorlayer>`__.
|
|
- `Super Resolution GAN <https://arxiv.org/abs/1609.04802>`__ by `zsdonghao <https://github.com/tensorlayer/SRGAN>`__.
|
|
- `BEGAN: Boundary Equilibrium Generative Adversarial Networks <http://arxiv.org/abs/1703.10717>`__ by `2wins <https://github.com/2wins/BEGAN-tensorlayer>`__.
|
|
- `DAGAN: Fast Compressed Sensing MRI Reconstruction <https://github.com/nebulaV/DAGAN>`__ by `nebulaV <https://github.com/nebulaV/DAGAN>`__.
|
|
|
|
Natural Language Processing
|
|
==============================
|
|
Warning:These examples below only support Tensorlayer 2.0. Tensorlayer 3.0 is under development.
|
|
- Recurrent Neural Network (LSTM). Apply multiple LSTM to PTB dataset for language modeling, see `tutorial_ptb_lstm_state_is_tuple.py <https://github.com/tensorlayer/tensorlayer/blob/master/examples/text_ptb/tutorial_ptb_lstm_state_is_tuple.py>`__.
|
|
- Word Embedding (Word2vec). Train a word embedding matrix, see `tutorial_word2vec_basic.py <https://github.com/tensorlayer/tensorlayer/blob/master/examples/text_word_embedding/tutorial\_word2vec_basic.py>`__.
|
|
- Restore Embedding matrix. Restore a pre-train embedding matrix, see `tutorial_generate_text.py <https://github.com/tensorlayer/tensorlayer/blob/master/examples/text_generation/tutorial_generate_text.py>`__.
|
|
- Text Generation. Generates new text scripts, using LSTM network, see `tutorial_generate_text.py <https://github.com/tensorlayer/tensorlayer/blob/master/examples/text_generation/tutorial_generate_text.py>`__.
|
|
- Chinese Text Anti-Spam by `pakrchen <https://github.com/pakrchen/text-antispam>`__.
|
|
- `Chatbot in 200 lines of code <https://github.com/tensorlayer/seq2seq-chatbot>`__ for `Seq2Seq <http://tensorlayer.readthedocs.io/en/latest/modules/layers.html#simple-seq2seq>`__.
|
|
- FastText Sentence Classification (IMDB), see `tutorial_imdb_fasttext.py <https://github.com/tensorlayer/tensorlayer/blob/master/examples/text_classification/tutorial_imdb_fasttext.py>`__ by `tomtung <https://github.com/tomtung>`__.
|
|
|
|
Reinforcement Learning
|
|
==============================
|
|
Warning:These examples below only support Tensorlayer 2.0. Tensorlayer 3.0 is under development.
|
|
- Policy Gradient / Network (Atari Ping Pong), see `tutorial_atari_pong.py <https://github.com/tensorlayer/tensorlayer/blob/master/examples/reinforcement_learning/tutorial_atari_pong.py>`__.
|
|
- Deep Q-Network (Frozen lake), see `tutorial_frozenlake_dqn.py <https://github.com/tensorlayer/tensorlayer/blob/master/examples/reinforcement_learning/tutorial_frozenlake_dqn.py>`__.
|
|
- Q-Table learning algorithm (Frozen lake), see `tutorial_frozenlake_q_table.py <https://github.com/tensorlayer/tensorlayer/blob/master/examples/reinforcement_learning/tutorial_frozenlake_q_table.py>`__.
|
|
- Asynchronous Policy Gradient using TensorDB (Atari Ping Pong) by `nebulaV <https://github.com/akaraspt/tl_paper>`__.
|
|
- AC for discrete action space (Cartpole), see `tutorial_cartpole_ac.py <https://github.com/tensorlayer/tensorlayer/blob/master/examples/reinforcement_learning/tutorial_cartpole_ac.py>`__.
|
|
- A3C for continuous action space (Bipedal Walker), see `tutorial_bipedalwalker_a3c*.py <https://github.com/tensorlayer/tensorlayer/blob/master/examples/reinforcement_learning/tutorial_bipedalwalker_a3c_continuous_action.py>`__.
|
|
- `DAGGER <https://www.cs.cmu.edu/%7Esross1/publications/Ross-AIStats11-NoRegret.pdf>`__ for (`Gym Torcs <https://github.com/ugo-nama-kun/gym_torcs>`__) by `zsdonghao <https://github.com/zsdonghao/Imitation-Learning-Dagger-Torcs>`__.
|
|
- `TRPO <https://arxiv.org/abs/1502.05477>`__ for continuous and discrete action space by `jjkke88 <https://github.com/jjkke88/RL_toolbox>`__.
|
|
|
|
Miscellaneous
|
|
=================
|
|
Warning:These examples below only support Tensorlayer 2.0. Tensorlayer 3.0 is under development.
|
|
|
|
- `Sipeed <https://github.com/sipeed/Maix-EMC>`__ : Run TensorLayer on AI Chips
|
|
|
|
..
|
|
- TensorDB by `fangde <https://github.com/fangde>`__ see `tl_paper <https://github.com/akaraspt/tl_paper>`__.
|
|
- A simple web service - `TensorFlask <https://github.com/JoelKronander/TensorFlask>`__ by `JoelKronander <https://github.com/JoelKronander>`__.
|
|
|
|
..
|
|
Applications
|
|
=============
|
|
|
|
There are some good applications implemented by TensorLayer.
|
|
You may able to find some useful examples for your project.
|
|
If you want to share your application, please contact tensorlayer@gmail.com.
|
|
|
|
1D CNN + LSTM for Biosignal
|
|
---------------------------------
|
|
|
|
Author : `Akara Supratak <https://akaraspt.github.io>`__
|
|
|
|
Introduction
|
|
^^^^^^^^^^^^
|
|
|
|
Implementation
|
|
^^^^^^^^^^^^^^
|
|
|
|
Citation
|
|
^^^^^^^^
|
|
|
|
|
|
|
|
|
|
|
|
.. _GitHub: https://github.com/tensorlayer/tensorlayer
|
|
.. _Deeplearning Tutorial: http://deeplearning.stanford.edu/tutorial/
|
|
.. _Convolutional Neural Networks for Visual Recognition: http://cs231n.github.io/
|
|
.. _Neural Networks and Deep Learning: http://neuralnetworksanddeeplearning.com/
|
|
.. _TensorFlow tutorial: https://www.tensorflow.org/versions/r0.9/tutorials/index.html
|
|
.. _Understand Deep Reinforcement Learning: http://karpathy.github.io/2016/05/31/rl/
|
|
.. _Understand Recurrent Neural Network: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
|
|
.. _Understand LSTM Network: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
|
|
.. _Word Representations: http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
|