JGAN/models/unit/unit.py

247 lines
8.6 KiB
Python

import argparse
import os
import numpy as np
import math
import datetime
import time
import sys
import jittor.transform as transform
from models import *
from datasets import *
import jittor as jt
jt.flags.use_cuda = 1
parser = argparse.ArgumentParser()
parser.add_argument("--epoch", type=int, default=0, help="epoch to start training from")
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--dataset_name", type=str, default="monet2photo", help="name of the dataset")
parser.add_argument("--batch_size", type=int, default=1, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0001, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--decay_epoch", type=int, default=100, help="epoch from which to start lr decay")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--img_height", type=int, default=256, help="size of image height")
parser.add_argument("--img_width", type=int, default=256, help="size of image width")
parser.add_argument("--channels", type=int, default=3, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=100, help="interval between saving generator samples")
parser.add_argument("--checkpoint_interval", type=int, default=-1, help="interval between saving model checkpoints")
parser.add_argument("--n_downsample", type=int, default=2, help="number downsampling layers in encoder")
parser.add_argument("--dim", type=int, default=64, help="number of filters in first encoder layer")
opt = parser.parse_args()
print(opt)
# Create sample and checkpoint directories
os.makedirs("images/%s" % opt.dataset_name, exist_ok=True)
os.makedirs("saved_models/%s" % opt.dataset_name, exist_ok=True)
# Losses
criterion_GAN = nn.MSELoss()
criterion_pixel = nn.L1Loss()
input_shape = (opt.channels, opt.img_height, opt.img_width)
# Dimensionality (channel-wise) of image embedding
shared_dim = opt.dim * 2 ** opt.n_downsample
# Initialize generator and discriminator
shared_E = ResidualBlock(features=shared_dim)
E1 = Encoder(dim=opt.dim, n_downsample=opt.n_downsample, shared_block=shared_E)
E2 = Encoder(dim=opt.dim, n_downsample=opt.n_downsample, shared_block=shared_E)
shared_G = ResidualBlock(features=shared_dim)
G1 = Generator(dim=opt.dim, n_upsample=opt.n_downsample, shared_block=shared_G)
G2 = Generator(dim=opt.dim, n_upsample=opt.n_downsample, shared_block=shared_G)
D1 = Discriminator(input_shape)
D2 = Discriminator(input_shape)
# Loss weights
lambda_0 = 10 # GAN
lambda_1 = 0.1 # KL (encoded images)
lambda_2 = 100 # ID pixel-wise
lambda_3 = 0.1 # KL (encoded translated images)
lambda_4 = 100 # Cycle pixel-wise
# Optimizers
optimizer_G = nn.Adam(
E1.parameters() + E2.parameters() + G1.parameters() + G2.parameters(),
lr=opt.lr,
betas=(opt.b1, opt.b2),
)
optimizer_D1 = nn.Adam(D1.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D2 = nn.Adam(D2.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
# Image transformations
transform_ = [
transform.Resize(int(opt.img_height * 1.12), Image.BICUBIC),
transform.RandomCrop((opt.img_height, opt.img_width)),
transform.RandomHorizontalFlip(),
transform.ImageNormalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
dataloader = ImageDataset("../../data/%s" % opt.dataset_name, transforms_=transform_, unaligned=True).set_attrs(batch_size=opt.batch_size, shuffle=True, num_workers=opt.n_cpu)
val_dataloader = ImageDataset("../../data/%s" % opt.dataset_name, transforms_=transform_, unaligned=True, mode="test").set_attrs(batch_size=5, shuffle=True, num_workers=1)
import cv2
def save_image(img, path, nrow=10, padding=5):
N,C,W,H = img.shape
if (N%nrow!=0):
print("N%nrow!=0")
return
ncol=int(N/nrow)
img_all = []
for i in range(ncol):
img_ = []
for j in range(nrow):
img_.append(img[i*nrow+j])
img_.append(np.zeros((C,W,padding)))
img_all.append(np.concatenate(img_, 2))
img_all.append(np.zeros((C,padding,img_all[0].shape[2])))
img = np.concatenate(img_all, 1)
img = np.concatenate([np.zeros((C,padding,img.shape[2])), img], 1)
img = np.concatenate([np.zeros((C,img.shape[1],padding)), img], 2)
min_=img.min()
max_=img.max()
img=(img-min_)/(max_-min_)*255
img=img.transpose((1,2,0))
if C==3:
img = img[:,:,::-1]
cv2.imwrite(path,img)
def sample_images(batches_done):
"""Saves a generated sample from the test set"""
imgs = next(iter(val_dataloader))
X1 = imgs[0].stop_grad()
X2 = imgs[1].stop_grad()
E1.eval()
E2.eval()
G1.eval()
G2.eval()
_, Z1 = E1(X1)
_, Z2 = E2(X2)
fake_X1 = G1(Z2)
fake_X2 = G2(Z1)
img_sample = jt.contrib.concat((X1, fake_X2, X2, fake_X1), 0)
save_image(img_sample.numpy(), "images/%s/%s.png" % (opt.dataset_name, batches_done), nrow=5)
def compute_kl(mu):
mu_2 = mu.sqr()
loss = jt.mean(mu_2)
return loss
# ----------
# Training
# ----------
prev_time = time.time()
for epoch in range(opt.epoch, opt.n_epochs):
for i, batch in enumerate(dataloader):
# Set model input
X1 = batch[0].stop_grad()
X2 = batch[1].stop_grad()
# Adversarial ground truths
valid = jt.ones((X1.size(0), *D1.output_shape)).stop_grad()
fake = jt.zeros((X1.size(0), *D1.output_shape)).stop_grad()
# -------------------------------
# Train Encoders and Generators
# -------------------------------
E1.train()
E2.train()
G1.train()
G2.train()
# Get shared latent representation
mu1, Z1 = E1(X1)
mu2, Z2 = E2(X2)
# Reconstruct images
recon_X1 = G1(Z1)
recon_X2 = G2(Z2)
# Translate images
fake_X1 = G1(Z2)
fake_X2 = G2(Z1)
# Cycle translation
mu1_, Z1_ = E1(fake_X1)
mu2_, Z2_ = E2(fake_X2)
cycle_X1 = G1(Z2_)
cycle_X2 = G2(Z1_)
# Losses
loss_GAN_1 = lambda_0 * criterion_GAN(D1(fake_X1), valid)
loss_GAN_2 = lambda_0 * criterion_GAN(D2(fake_X2), valid)
loss_KL_1 = lambda_1 * compute_kl(mu1)
loss_KL_2 = lambda_1 * compute_kl(mu2)
loss_ID_1 = lambda_2 * criterion_pixel(recon_X1, X1)
loss_ID_2 = lambda_2 * criterion_pixel(recon_X2, X2)
loss_KL_1_ = lambda_3 * compute_kl(mu1_)
loss_KL_2_ = lambda_3 * compute_kl(mu2_)
loss_cyc_1 = lambda_4 * criterion_pixel(cycle_X1, X1)
loss_cyc_2 = lambda_4 * criterion_pixel(cycle_X2, X2)
# Total loss
loss_G = (
loss_KL_1
+ loss_KL_2
+ loss_ID_1
+ loss_ID_2
+ loss_GAN_1
+ loss_GAN_2
+ loss_KL_1_
+ loss_KL_2_
+ loss_cyc_1
+ loss_cyc_2
)
loss_G.sync()
optimizer_G.step(loss_G)
# -----------------------
# Train Discriminator 1
# -----------------------
loss_D1 = criterion_GAN(D1(X1), valid) + criterion_GAN(D1(fake_X1.detach()), fake)
loss_D1.sync()
optimizer_D1.step(loss_D1)
# -----------------------
# Train Discriminator 2
# -----------------------
loss_D2 = criterion_GAN(D2(X2), valid) + criterion_GAN(D2(fake_X2.detach()), fake)
loss_D2.sync()
optimizer_D2.step(loss_D2)
# --------------
# Log Progress
# --------------
# Determine approximate time left
batches_done = epoch * len(dataloader) + i
batches_left = opt.n_epochs * len(dataloader) - batches_done
time_left = datetime.timedelta(seconds=batches_left * (time.time() - prev_time))
prev_time = time.time()
# Print log
sys.stdout.write(
"\r[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f] ETA: %s"
% (epoch, opt.n_epochs, i, len(dataloader), (loss_D1 + loss_D2).data[0], loss_G.data[0], time_left)
)
# If at sample interval save image
if batches_done % opt.sample_interval == 0:
sample_images(batches_done)
if epoch >= opt.decay_epoch:
optimizer_G.lr = opt.lr * (opt.n_epochs - epoch - 1) / (opt.n_epochs - opt.decay_epoch)
optimizer_D1.lr = opt.lr * (opt.n_epochs - epoch - 1) / (opt.n_epochs - opt.decay_epoch)
optimizer_D2.lr = opt.lr * (opt.n_epochs - epoch - 1) / (opt.n_epochs - opt.decay_epoch)