JGAN/models/stargan/stargan.py

280 lines
11 KiB
Python

"""
StarGAN (CelebA)
The dataset can be downloaded from: https://www.dropbox.com/sh/8oqt9vytwxb3s4r/AADIKlz8PR9zr6Y20qbkunrba/Img/img_align_celeba.zip?dl=0
And the annotations: https://www.dropbox.com/sh/8oqt9vytwxb3s4r/AAA8YmAHNNU6BEfWMPMfM6r9a/Anno?dl=0&preview=list_attr_celeba.txt
Instructions on running the script:
1. Download the dataset and annotations from the provided link
2. Put images to folder 'img_align_celeba_attr/images'
3. Copy 'list_attr_celeba.txt' to folder 'img_align_celeba_attr'
4. Save the folder 'img_align_celeba_attr' to '../../data/'
5. Run the script by 'python3 stargan.py'
"""
import jittor as jt
from jittor import init
from jittor import nn
import jittor.transform as transform
import argparse
import os
import numpy as np
import math
import itertools
import time
import datetime
import sys
import cv2
from models import *
from datasets import *
jt.flags.use_cuda = 1
os.makedirs("images", exist_ok=True)
os.makedirs("saved_models", exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument("--epoch", type=int, default=0, help="epoch to start training from")
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--dataset_name", type=str, default="img_align_celeba_attr", help="name of the dataset")
parser.add_argument("--batch_size", type=int, default=16, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--decay_epoch", type=int, default=100, help="epoch from which to start lr decay")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--img_height", type=int, default=128, help="size of image height")
parser.add_argument("--img_width", type=int, default=128, help="size of image width")
parser.add_argument("--channels", type=int, default=3, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval between saving generator samples")
parser.add_argument("--checkpoint_interval", type=int, default=-1, help="interval between model checkpoints")
parser.add_argument("--residual_blocks", type=int, default=6, help="number of residual blocks in generator")
parser.add_argument(
"--selected_attrs",
"--list",
nargs="+",
help="selected attributes for the CelebA dataset",
default=["Black_Hair", "Blond_Hair", "Brown_Hair", "Male", "Young"],
)
parser.add_argument("--n_critic", type=int, default=5, help="number of training iterations for WGAN discriminator")
opt = parser.parse_args()
print(opt)
def save_image(img, path, nrow=10):
N,C,W,H = img.shape
if (N%nrow!=0):
print("save_image error: N%nrow!=0")
return
img=img.transpose((1,0,2,3))
ncol=int(N/nrow)
img2=img.reshape([img.shape[0],-1,H])
img=img2[:,:W*ncol,:]
for i in range(1,int(img2.shape[1]/W/ncol)):
img=np.concatenate([img,img2[:,W*ncol*i:W*ncol*(i+1),:]],axis=2)
min_=img.min()
max_=img.max()
img=(img-min_)/(max_-min_)*255
img=img.transpose((1,2,0))
if C==3:
# img = img[:,:,::-1]
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
cv2.imwrite(path,img)
c_dim = len(opt.selected_attrs)
img_shape = (opt.channels, opt.img_height, opt.img_width)
# Loss functions
criterion_cycle = nn.L1Loss()
bce_with_logits_loss = nn.BCEWithLogitsLoss(size_average=False)
def criterion_cls(logit, target):
return bce_with_logits_loss(logit, target) / logit.size(0)
# Loss weights
lambda_cls = 1
lambda_rec = 10
lambda_gp = 10
# Initialize generator and discriminator
generator = GeneratorResNet(img_shape=img_shape, res_blocks=opt.residual_blocks, c_dim=c_dim)
discriminator = Discriminator(img_shape=img_shape, c_dim=c_dim)
# Optimizers
optimizer_G = jt.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = jt.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
# Configure dataloaders
train_transforms = [
transform.Resize(int(1.12 * opt.img_height), Image.BICUBIC),
transform.RandomCrop(opt.img_height),
transform.RandomHorizontalFlip(),
transform.ImageNormalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
dataloader = CelebADataset(
"../../data/%s" % opt.dataset_name, transform_=train_transforms, mode="train", attributes=opt.selected_attrs).set_attrs(
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.n_cpu,
)
val_transforms = [
transform.Resize((opt.img_height, opt.img_width), Image.BICUBIC),
transform.ImageNormalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
val_dataloader = CelebADataset(
"../../data/%s" % opt.dataset_name, transform_=train_transforms, mode="val", attributes=opt.selected_attrs).set_attrs(
batch_size=10,
shuffle=True,
num_workers=opt.n_cpu,
)
def compute_gradient_penalty(D, real_samples, fake_samples):
"""Calculates the gradient penalty loss for WGAN GP"""
# Random weight term for interpolation between real and fake samples
alpha = jt.array(np.random.random((real_samples.size(0), 1, 1, 1)).astype(np.float32))
# Get random interpolation between real and fake samples
interpolates = alpha * real_samples + ((1 - alpha) * fake_samples)
d_interpolates, _ = D(interpolates)
# Get gradient w.r.t. interpolates
gradients = jt.grad(d_interpolates, interpolates)
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
return gradient_penalty
label_changes = [
((0, 1), (1, 0), (2, 0)), # Set to black hair
((0, 0), (1, 1), (2, 0)), # Set to blonde hair
((0, 0), (1, 0), (2, 1)), # Set to brown hair
((3, -1),), # Flip gender
((4, -1),), # Age flip
]
def sample_images(batches_done):
"""Saves a generated sample of domain translations"""
val_imgs, val_labels = next(iter(val_dataloader))
val_imgs = jt.array(val_imgs)
val_labels = jt.array(val_labels)
img_samples = None
for i in range(10):
img, label = val_imgs[i], val_labels[i]
# Repeat for number of label changes
imgs = img.broadcast([c_dim, img.shape[0], img.shape[1], img.shape[2]],[0])
labels = label.broadcast([c_dim, label.shape[0]],[0])
# Make changes to labels
for sample_i, changes in enumerate(label_changes):
for col, val in changes:
labels[sample_i, col] = 1 - labels[sample_i, col] if val == -1 else val
# Generate translations
gen_imgs = generator(imgs, labels).numpy()
# Concatenate images by width
gen_imgs = np.concatenate([x for x in gen_imgs], axis=-1)
img_sample = jt.array(np.concatenate([img.numpy(), gen_imgs], axis=-1))
# Add as row to generated samples
img_samples = img_sample if img_samples is None else jt.contrib.concat((img_samples, img_sample), -2)
save_image(img_samples.view(1, *img_samples.shape).numpy(), "images/%s.png" % batches_done, nrow=1)
warmup_times = -1
run_times = 3000
total_time = 0.
cnt = 0
# ----------
# Training
# ----------
saved_samples = []
start_time = time.time()
for epoch in range(opt.epoch, opt.n_epochs):
for i, (imgs, labels) in enumerate(dataloader):
# Sample labels as generator inputs
sampled_c = jt.array(np.random.randint(0, 2, (imgs.size(0), c_dim)).astype(np.float32)).stop_grad()
# Generate fake batch of images
fake_imgs = generator(imgs, sampled_c)
# ---------------------
# Train Discriminator
# ---------------------
# Real images
real_validity, pred_cls = discriminator(imgs)
# Fake images
fake_validity, _ = discriminator(fake_imgs)
# Gradient penalty
gradient_penalty = compute_gradient_penalty(discriminator, imgs, fake_imgs)
# Adversarial loss
loss_D_adv = -jt.mean(real_validity) + jt.mean(fake_validity) + lambda_gp * gradient_penalty
# Classification loss
loss_D_cls = criterion_cls(pred_cls, labels)
# Total loss
loss_D = loss_D_adv + lambda_cls * loss_D_cls
optimizer_D.step(loss_D)
# Every n_critic times update generator
if i % opt.n_critic == 0:
# -----------------
# Train Generator
# -----------------
# Translate and reconstruct image
gen_imgs = generator(imgs, sampled_c)
recov_imgs = generator(gen_imgs, labels)
# Discriminator evaluates translated image
fake_validity, pred_cls = discriminator(gen_imgs)
# Adversarial loss
loss_G_adv = -jt.mean(fake_validity)
# Classification loss
loss_G_cls = criterion_cls(pred_cls, sampled_c)
# Reconstruction loss
loss_G_rec = criterion_cycle(recov_imgs, imgs)
# Total loss
loss_G = loss_G_adv + lambda_cls * loss_G_cls + lambda_rec * loss_G_rec
optimizer_G.step(loss_G)
if warmup_times==-1:
# --------------
# Log Progress
# --------------
# Determine approximate time left
batches_done = epoch * len(dataloader) + i
batches_left = opt.n_epochs * len(dataloader) - batches_done
time_left = datetime.timedelta(seconds=batches_left * (time.time() - start_time) / (batches_done + 1))
# Print log
sys.stdout.write(
"\r[Epoch %d/%d] [Batch %d/%d] [D adv: %f, aux: %f] [G loss: %f, adv: %f, aux: %f, cycle: %f] ETA: %s"
% (
epoch,
opt.n_epochs,
i,
len(dataloader),
loss_D_adv.numpy()[0],
loss_D_cls.numpy()[0],
loss_G.numpy()[0],
loss_G_adv.numpy()[0],
loss_G_cls.numpy()[0],
loss_G_rec.numpy()[0],
time_left,
)
)
# If at sample interval sample and save image
if batches_done % opt.sample_interval == 0:
sample_images(batches_done)
if warmup_times!=-1:
jt.sync_all()
cnt += 1
print(cnt)
if cnt == warmup_times:
jt.sync_all(True)
sta = time.time()
if cnt > warmup_times + run_times:
jt.sync_all(True)
total_time = time.time() - sta
print(f"run {run_times} iters cost {total_time} seconds, and avg {total_time / run_times} one iter.")
exit(0)