JGAN/models/dragan/dragan.py

175 lines
6.8 KiB
Python

import jittor as jt
from jittor import init
from jittor import nn
from jittor.dataset.mnist import MNIST
import jittor.transform as transform
import argparse
import os
import numpy as np
import math
import cv2
import time
jt.flags.use_cuda = 1
os.makedirs('images', exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument('--n_epochs', type=int, default=200, help='number of epochs of training')
parser.add_argument('--batch_size', type=int, default=64, help='size of the batches')
parser.add_argument('--lr', type=float, default=0.0002, help='adam: learning rate')
parser.add_argument('--b1', type=float, default=0.5, help='adam: decay of first order momentum of gradient')
parser.add_argument('--b2', type=float, default=0.999, help='adam: decay of first order momentum of gradient')
parser.add_argument('--n_cpu', type=int, default=8, help='number of cpu threads to use during batch generation')
parser.add_argument('--latent_dim', type=int, default=100, help='dimensionality of the latent space')
parser.add_argument('--img_size', type=int, default=32, help='size of each image dimension')
parser.add_argument('--channels', type=int, default=1, help='number of image channels')
parser.add_argument('--sample_interval', type=int, default=1000, help='interval between image sampling')
opt = parser.parse_args()
print(opt)
def save_image(img, path, nrow=10):
N,C,W,H = img.shape
img2=img.reshape([img.shape[1],-1,H])
img=img2[:,:W*nrow,:]
for i in range(1,int(img2.shape[1]/W/nrow)):
img=np.concatenate([img,img2[:,W*nrow*i:W*nrow*(i+1),:]],axis=2)
img=(img+1.0)/2.0*255
img=img.transpose((1,2,0))
cv2.imwrite(path,img)
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
jt.init.gauss_(m.weight, 0.0, 0.02)
elif classname.find("BatchNorm") != -1:
jt.init.gauss_(m.weight, 1.0, 0.02)
jt.init.constant_(m.bias, 0.0)
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.init_size = (opt.img_size // 4)
self.l1 = nn.Sequential(nn.Linear(opt.latent_dim, (128 * (self.init_size ** 2))))
self.conv_blocks = nn.Sequential(nn.BatchNorm(128), nn.Upsample(scale_factor=2), nn.Conv(128, 128, 3, stride=1, padding=1), nn.BatchNorm(128, eps=0.8), nn.LeakyReLU(scale=0.2), nn.Upsample(scale_factor=2), nn.Conv(128, 64, 3, stride=1, padding=1), nn.BatchNorm(64, eps=0.8), nn.LeakyReLU(scale=0.2), nn.Conv(64, opt.channels, 3, stride=1, padding=1), nn.Tanh())
for m in self.conv_blocks:
weights_init_normal(m)
def execute(self, noise):
out = self.l1(noise)
out = out.view((out.shape[0], 128, self.init_size, self.init_size))
img = self.conv_blocks(out)
return img
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
def discriminator_block(in_filters, out_filters, bn=True):
block = [nn.Conv(in_filters, out_filters, 3, stride=2, padding=1), nn.LeakyReLU(scale=0.2), nn.Dropout(p=0.25)]
if bn:
block.append(nn.BatchNorm(out_filters, eps=0.8))
for m in block:
weights_init_normal(m)
return block
self.model = nn.Sequential(*discriminator_block(opt.channels, 16, bn=False), *discriminator_block(16, 32), *discriminator_block(32, 64), *discriminator_block(64, 128))
ds_size = (opt.img_size // (2 ** 4))
self.adv_layer = nn.Sequential(nn.Linear((128 * (ds_size ** 2)), 1), nn.Sigmoid())
def execute(self, img):
out = self.model(img)
out = out.view((out.shape[0], (- 1)))
validity = self.adv_layer(out)
return validity
adversarial_loss = nn.BCELoss()
lambda_gp = 10
# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()
# Configure data loader
transform = transform.Compose([
transform.Resize(size=opt.img_size),
transform.Gray(),
transform.ImageNormalize(mean=[0.5], std=[0.5]),
])
dataloader = MNIST(train=True, transform=transform).set_attrs(batch_size=opt.batch_size, shuffle=True)
# Optimizers
optimizer_G = jt.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = jt.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
def std(x):
return jt.sqrt((x-x.mean()).sqr().mean().maximum(1e-6))
def norm(x, k, dim):
assert k==2 or k==1
if k==1:
return x.abs().sum(dim)
if k==2:
return jt.sqrt((x.sqr()).sum(dim).maximum(1e-6))
def compute_gradient_penalty(D, X):
'Calculates the gradient penalty loss for DRAGAN'
alpha = jt.array(np.random.random(size=X.shape).astype(np.float32)).stop_grad()
interpolates = ((alpha * X) + ((1 - alpha) * (X + ((0.5 * std(X)) * jt.random(X.shape)))))
d_interpolates = D(interpolates)
gradients = jt.grad(d_interpolates, interpolates)
gradient_penalty = (lambda_gp * ((norm(gradients, 2, dim=1) - 1).sqr()).mean())
return gradient_penalty
warmup_times = -1
run_times = 3000
total_time = 0.
cnt = 0
# ----------
# Training
# ----------
for epoch in range(opt.n_epochs):
for (i, (real_imgs, _)) in enumerate(dataloader):
valid = jt.ones([real_imgs.shape[0], 1]).stop_grad()
fake = jt.zeros([real_imgs.shape[0], 1]).stop_grad()
# -----------------
# Train Generator
# -----------------
z = jt.array(np.random.normal(0, 1, (real_imgs.shape[0], opt.latent_dim)).astype(np.float32))
gen_imgs = generator(z)
g_loss = adversarial_loss(discriminator(gen_imgs), valid)
optimizer_G.step(g_loss)
# ---------------------
# Train Discriminator
# ---------------------
real_loss = adversarial_loss(discriminator(real_imgs), valid)
fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
gradient_penalty = compute_gradient_penalty(discriminator, real_imgs)
d_loss = (real_loss + fake_loss) / 2 + gradient_penalty
optimizer_D.step(d_loss)
if warmup_times==-1:
print(('[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]' % (epoch, opt.n_epochs, i, len(dataloader), d_loss.numpy()[0], g_loss.numpy()[0])))
else:
jt.sync_all()
cnt += 1
print(cnt)
if cnt == warmup_times:
jt.sync_all(True)
sta = time.time()
if cnt > warmup_times + run_times:
jt.sync_all(True)
total_time = time.time() - sta
print(f"run {run_times} iters cost {total_time} seconds, and avg {total_time / run_times} one iter.")
exit(0)
if warmup_times==-1:
save_image(gen_imgs.data, ('images/%d.png' % epoch), nrow=int(math.sqrt(opt.batch_size)))