JGAN/models/cluster_gan/clustergan.py

357 lines
14 KiB
Python

import jittor as jt
from jittor import init
from jittor import nn
from jittor.dataset.mnist import MNIST
import jittor.transform as transform
import cv2
import argparse
import os, sys
import numpy as np
from itertools import chain as ichain
import time
jt.flags.use_cuda = 1
os.makedirs("images", exist_ok=True)
parser = argparse.ArgumentParser(description='ClusterGAN Training Script')
parser.add_argument('-n', '--n_epochs', dest='n_epochs', default=200, type=int, help='Number of epochs')
parser.add_argument('-b', '--batch_size', dest='batch_size', default=32, type=int, help='Batch size')
parser.add_argument('-i', '--img_size', dest='img_size', type=int, default=28, help='Size of image dimension')
parser.add_argument('-d', '--latent_dim', dest='latent_dim', default=30, type=int, help='Dimension of latent space')
parser.add_argument('-l', '--lr', dest='learning_rate', type=float, default=0.0001, help='Learning rate')
parser.add_argument('-c', '--n_critic', dest='n_critic', type=int, default=5, help='Number of training steps for discriminator per iter')
parser.add_argument('-w', '--wass_flag', dest='wass_flag', action='store_true', help='Flag for Wasserstein metric')
args = parser.parse_args()
def save_image(img, path, nrow=10):
N,C,W,H = img.shape
img2=img.reshape([-1,W*nrow*nrow,H])
img=img2[:,:W*nrow,:]
for i in range(1,nrow):
img=np.concatenate([img,img2[:,W*nrow*i:W*nrow*(i+1),:]],axis=2)
min_=img.min()
max_=img.max()
img=(img-min_)/(max_-min_)*255
img=img.transpose((1,2,0))
cv2.imwrite(path,img)
def sample_z(shape=64, latent_dim=10, n_c=10, fix_class=(- 1)):
assert ((fix_class == (- 1)) or ((fix_class >= 0) and (fix_class < n_c))), ('Requested class %i outside bounds.' % fix_class)
zn = jt.array(0.75 * np.random.normal(0, 1, (shape, latent_dim)).astype(np.float32)).stop_grad()
zc_FT = np.zeros([shape, n_c])
zc_idx = np.zeros(n_c)
if (fix_class == (- 1)):
zc_idx = np.random.randint(n_c, size=shape)
zc_FT[range(shape),zc_idx]=1
else:
zc_idx[:] = fix_class
zc_FT[range(shape),fix_class]=1
zc = jt.array(zc_FT.astype(np.float32)).stop_grad()
zc_idx = jt.array(zc_idx.astype(np.float32)).stop_grad()
return (zn, zc, zc_idx)
def calc_gradient_penalty(netD, real_data, generated_data):
LAMBDA = 10
b_size = real_data.shape[0]
alpha = jt.random([b_size, 1, 1, 1])
alpha = alpha.broadcast(real_data)
interpolated = ((alpha * real_data.data) + ((1 - alpha) * generated_data.data))
prob_interpolated = netD(interpolated)
gradients = jt.grad(prob_interpolated, interpolated)
gradients = jt.reshape(gradients, [b_size, -1])
gradients_norm = jt.sqrt((jt.sum((gradients ** 2), dim=1) + 1e-12))
return (LAMBDA * ((gradients_norm - 1) ** 2).mean())
def initialize_weights(net):
for m in net.modules():
if isinstance(m, nn.Conv):
init.gauss_(m.weight, 0, 0.02)
init.constant_(m.bias, 0)
elif isinstance(m, nn.ConvTranspose):
init.gauss_(m.weight, 0, 0.02)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.gauss_(m.weight, 0, 0.02)
init.constant_(m.bias, 0)
class BatchNorm1d(nn.Module):
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=None, is_train=True, sync=True):
assert affine == None
self.sync = sync
self.num_features = num_features
self.is_train = is_train
self.eps = eps
self.momentum = momentum
self.weight = init.constant((num_features,), "float32", 1.0)
self.bias = init.constant((num_features,), "float32", 0.0)
self.running_mean = init.constant((num_features,), "float32", 0.0).stop_grad()
self.running_var = init.constant((num_features,), "float32", 1.0).stop_grad()
def execute(self, x):
if self.is_train:
xmean = jt.mean(x, dims=[0], keepdims=1)
x2mean = jt.mean(x*x, dims=[0], keepdims=1)
if self.sync and jt.mpi:
xmean = xmean.mpi_all_reduce("mean")
x2mean = x2mean.mpi_all_reduce("mean")
xvar = x2mean-xmean*xmean
norm_x = (x-xmean)/jt.sqrt(xvar+self.eps)
self.running_mean += (xmean.sum([0])-self.running_mean)*self.momentum
self.running_var += (xvar.sum([0])-self.running_var)*self.momentum
else:
running_mean = self.running_mean.broadcast(x, [0])
running_var = self.running_var.broadcast(x, [0])
norm_x = (x-running_mean)/jt.sqrt(running_var+self.eps)
w = self.weight.broadcast(x, [0])
b = self.bias.broadcast(x, [0])
return norm_x * w + b
class Reshape(nn.Module):
'\n Class for performing a reshape as a layer in a sequential model.\n '
def __init__(self, shape=[]):
super(Reshape, self).__init__()
self.shape = shape
def execute(self, x):
return jt.reshape(x, [x.shape[0], *self.shape])
def extra_repr(self):
return 'shape={}'.format(self.shape)
class Generator_CNN(nn.Module):
'\n CNN to model the generator of a ClusterGAN\n Input is a vector from representation space of dimension z_dim\n output is a vector from image space of dimension X_dim\n '
def __init__(self, latent_dim, n_c, x_shape, verbose=False):
super(Generator_CNN, self).__init__()
self.name = 'generator'
self.latent_dim = latent_dim
self.n_c = n_c
self.x_shape = x_shape
self.ishape = (128, 7, 7)
self.iels = int(np.prod(self.ishape))
self.verbose = verbose
self.model0 = nn.Sequential(nn.Linear((self.latent_dim + self.n_c), 1024))
self.model1 = nn.Sequential(BatchNorm1d(1024), nn.Leaky_relu(0.2))
self.model2 = nn.Sequential(nn.Linear(1024, self.iels), BatchNorm1d(self.iels), nn.Leaky_relu(0.2))
self.model3 = nn.Sequential(Reshape(self.ishape), nn.ConvTranspose(128, 64, 4, stride=2, padding=1, bias=True), nn.BatchNorm(64), nn.Leaky_relu(0.2))
self.model4 = nn.Sequential(nn.ConvTranspose(64, 1, 4, stride=2, padding=1, bias=True))
self.sigmoid = nn.Sigmoid()
initialize_weights(self)
if self.verbose:
print('Setting up {}...\n'.format(self.name))
print(self.model)
def execute(self, zn, zc):
z = jt.contrib.concat([zn, zc], dim=1)
x_gen = self.model0(z)
x_gen = self.model1(x_gen)
x_gen = self.model2(x_gen)
x_gen = self.model3(x_gen)
x_gen = self.model4(x_gen)
x_gen = self.sigmoid(x_gen)
x_gen = jt.reshape(x_gen, [x_gen.shape[0], *self.x_shape])
return x_gen
class Encoder_CNN(nn.Module):
'\n CNN to model the encoder of a ClusterGAN\n Input is vector X from image space if dimension X_dim\n Output is vector z from representation space of dimension z_dim\n '
def __init__(self, latent_dim, n_c, verbose=False):
super(Encoder_CNN, self).__init__()
self.name = 'encoder'
self.channels = 1
self.latent_dim = latent_dim
self.n_c = n_c
self.cshape = (128, 5, 5)
self.iels = int(np.prod(self.cshape))
self.lshape = (self.iels,)
self.verbose = verbose
self.model = nn.Sequential(nn.Conv(self.channels, 64, 4, stride=2, bias=True), nn.Leaky_relu(0.2), nn.Conv(64, 128, 4, stride=2, bias=True), nn.Leaky_relu(0.2), Reshape(self.lshape), nn.Linear(self.iels, 1024), nn.Leaky_relu(0.2), nn.Linear(1024, (latent_dim + n_c)))
initialize_weights(self)
if self.verbose:
print('Setting up {}...\n'.format(self.name))
print(self.model)
def execute(self, in_feat):
z_img = self.model(in_feat)
z = jt.reshape(z_img, [z_img.shape[0], (- 1)])
zn = z[:, 0:self.latent_dim]
zc_logits = z[:, self.latent_dim:]
zc = nn.softmax(zc_logits, dim=1)
return (zn, zc, zc_logits)
class Discriminator_CNN(nn.Module):
'\n CNN to model the discriminator of a ClusterGAN\n Input is tuple (X,z) of an image vector and its corresponding\n representation z vector. For example, if X comes from the dataset, corresponding\n z is Encoder(X), and if z is sampled from representation space, X is Generator(z)\n Output is a 1-dimensional value\n '
def __init__(self, wass_metric=False, verbose=False):
super(Discriminator_CNN, self).__init__()
self.name = 'discriminator'
self.channels = 1
self.cshape = (128, 5, 5)
self.iels = int(np.prod(self.cshape))
self.lshape = (self.iels,)
self.wass = wass_metric
self.verbose = verbose
self.model = nn.Sequential(nn.Conv(self.channels, 64, 4, stride=2, bias=True), nn.Leaky_relu(0.2), nn.Conv(64, 128, 4, stride=2, bias=True), nn.Leaky_relu(0.2), Reshape(self.lshape), nn.Linear(self.iels, 1024), nn.Leaky_relu(0.2), nn.Linear(1024, 1))
if (not self.wass):
self.model = nn.Sequential(self.model, nn.Sigmoid())
initialize_weights(self)
if self.verbose:
print('Setting up {}...\n'.format(self.name))
print(self.model)
def execute(self, img):
validity = self.model(img)
return validity
n_epochs = args.n_epochs
batch_size = args.batch_size
test_batch_size = 5000
lr = args.learning_rate
b1 = 0.5
b2 = 0.9
decay = (2.5 * 1e-05)
n_skip_iter = args.n_critic
img_size = args.img_size
channels = 1
latent_dim = args.latent_dim
n_c = 10
betan = 10
betac = 10
wass_metric = args.wass_flag
print(wass_metric)
x_shape = (channels, img_size, img_size)
bce_loss = nn.BCELoss()
xe_loss = nn.CrossEntropyLoss()
mse_loss = nn.MSELoss()
# Initialize generator and discriminator
generator = Generator_CNN(latent_dim, n_c, x_shape)
encoder = Encoder_CNN(latent_dim, n_c)
discriminator = Discriminator_CNN(wass_metric=wass_metric)
# Configure data loader
transform = transform.Compose([
transform.Resize(size=img_size),
transform.Gray(),
])
dataloader = MNIST(train=True, transform=transform).set_attrs(batch_size=batch_size, shuffle=True)
testdata = MNIST(train=False, transform=transform).set_attrs(batch_size=batch_size, shuffle=True)
(test_imgs, test_labels) = next(iter(testdata))
ge_chain = generator.parameters()
for p in encoder.parameters():
ge_chain.append(p)
#TODO: weight_decay=decay
optimizer_GE = jt.optim.Adam(ge_chain, lr=lr, betas=(b1, b2), weight_decay=0.0)
optimizer_D = jt.optim.Adam(discriminator.parameters(), lr=lr, betas=(b1, b2))
ge_l = []
d_l = []
c_zn = []
c_zc = []
c_i = []
warmup_times = -1
run_times = 3000
total_time = 0.
cnt = 0
print(('\nBegin training session with %i epochs...\n' % n_epochs))
# ----------
# Training
# ----------
for epoch in range(n_epochs):
for (i, (real_imgs, itruth_label)) in enumerate(dataloader):
generator.train()
encoder.train()
(zn, zc, zc_idx) = sample_z(shape=real_imgs.shape[0], latent_dim=latent_dim, n_c=n_c)
gen_imgs = generator(zn, zc)
D_gen = discriminator(gen_imgs)
D_real = discriminator(real_imgs)
# -----------------
# Train Generator
# -----------------
if ((i % n_skip_iter) == 0):
(enc_gen_zn, enc_gen_zc, enc_gen_zc_logits) = encoder(gen_imgs)
zn_loss = mse_loss(enc_gen_zn, zn)
zc_loss = xe_loss(enc_gen_zc_logits, zc_idx)
if wass_metric:
ge_loss = ((jt.mean(D_gen) + (betan * zn_loss)) + (betac * zc_loss))
else:
valid = jt.ones([gen_imgs.shape[0], 1]).stop_grad()
v_loss = bce_loss(D_gen, valid)
ge_loss = ((v_loss + (betan * zn_loss)) + (betac * zc_loss))
optimizer_GE.step(ge_loss)
# ---------------------
# Train Discriminator
# ---------------------
if wass_metric:
grad_penalty = calc_gradient_penalty(discriminator, real_imgs, gen_imgs)
d_loss = ((jt.mean(D_real) - jt.mean(D_gen)) + grad_penalty)
else:
fake = jt.zeros([gen_imgs.shape[0], 1]).stop_grad()
real_loss = bce_loss(D_real, valid)
fake_loss = bce_loss(D_gen, fake)
d_loss = ((real_loss + fake_loss) / 2)
optimizer_D.step(d_loss)
if warmup_times!=-1:
jt.sync_all()
cnt += 1
print(cnt)
if cnt == warmup_times:
jt.sync_all(True)
sta = time.time()
if cnt > warmup_times + run_times:
jt.sync_all(True)
total_time = time.time() - sta
print(f"run {run_times} iters cost {total_time} seconds, and avg {total_time / run_times} one iter.")
exit(0)
if warmup_times==-1:
d_l.append(d_loss.numpy()[0])
ge_l.append(ge_loss.numpy()[0])
generator.eval()
encoder.eval()
n_sqrt_samp = 5
n_samp = (n_sqrt_samp * n_sqrt_samp)
(t_imgs, t_label) = (test_imgs, test_labels)
(e_tzn, e_tzc, e_tzc_logits) = encoder(t_imgs)
teg_imgs = generator(e_tzn, e_tzc)
img_mse_loss = mse_loss(t_imgs, teg_imgs)
c_i.append(img_mse_loss.numpy()[0])
(zn_samp, zc_samp, zc_samp_idx) = sample_z(shape=n_samp, latent_dim=latent_dim, n_c=n_c)
gen_imgs_samp = generator(zn_samp, zc_samp)
(zn_e, zc_e, zc_e_logits) = encoder(gen_imgs_samp)
lat_mse_loss = mse_loss(zn_e, zn_samp)
lat_xe_loss = xe_loss(zc_e_logits, zc_samp_idx)
c_zn.append(lat_mse_loss.numpy()[0])
c_zc.append(lat_xe_loss.numpy()[0])
(r_imgs, i_label) = (real_imgs[:n_samp], itruth_label[:n_samp])
(e_zn, e_zc, e_zc_logits) = encoder(r_imgs)
reg_imgs = generator(e_zn, e_zc)
save_image(reg_imgs.data[:n_samp], ('images/cycle_reg_%06i.png' % epoch), nrow=n_sqrt_samp)
save_image(gen_imgs_samp.data[:n_samp], ('images/gen_%06i.png' % epoch), nrow=n_sqrt_samp)
stack_imgs = None
for idx in range(n_c):
(zn_samp, zc_samp, zc_samp_idx) = sample_z(shape=n_c, latent_dim=latent_dim, n_c=n_c, fix_class=idx)
gen_imgs_samp = generator(zn_samp, zc_samp)
if (idx == 0):
stack_imgs = gen_imgs_samp
else:
stack_imgs = jt.contrib.concat([stack_imgs, gen_imgs_samp], dim=0)
save_image(stack_imgs.numpy(), ('images/gen_classes_%06i.png' % epoch), nrow=n_c)
print(('[Epoch %d/%d] \n\tModel Losses: [D: %f] [GE: %f]' % (epoch, n_epochs, d_loss.numpy()[0], ge_loss.numpy()[0])))
print(('\tCycle Losses: [x: %f] [z_n: %f] [z_c: %f]' % (img_mse_loss.numpy()[0], lat_mse_loss.numpy()[0], lat_xe_loss.numpy()[0])))