181 lines
6.8 KiB
Python
181 lines
6.8 KiB
Python
|
|
import jittor as jt
|
|
from jittor import init
|
|
import argparse
|
|
import os
|
|
import numpy as np
|
|
import math
|
|
from jittor import nn
|
|
|
|
if jt.has_cuda:
|
|
jt.flags.use_cuda = 1
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--n_epochs', type=int, default=100, help='number of epochs of training')
|
|
parser.add_argument('--batch_size', type=int, default=64, help='size of the batches')
|
|
parser.add_argument('--lr', type=float, default=0.0002, help='adam: learning rate')
|
|
parser.add_argument('--b1', type=float, default=0.5, help='adam: decay of first order momentum of gradient')
|
|
parser.add_argument('--b2', type=float, default=0.999, help='adam: decay of first order momentum of gradient')
|
|
parser.add_argument('--n_cpu', type=int, default=8, help='number of cpu threads to use during batch generation')
|
|
parser.add_argument('--latent_dim', type=int, default=100, help='dimensionality of the latent space')
|
|
parser.add_argument('--n_classes', type=int, default=10, help='number of classes for dataset')
|
|
parser.add_argument('--img_size', type=int, default=32, help='size of each image dimension')
|
|
parser.add_argument('--channels', type=int, default=1, help='number of image channels')
|
|
parser.add_argument('--sample_interval', type=int, default=1000, help='interval between image sampling')
|
|
opt = parser.parse_args()
|
|
print(opt)
|
|
|
|
img_shape = (opt.channels, opt.img_size, opt.img_size)
|
|
|
|
class Generator(nn.Module):
|
|
def __init__(self):
|
|
super(Generator, self).__init__()
|
|
self.label_emb = nn.Embedding(opt.n_classes, opt.n_classes)
|
|
|
|
def block(in_feat, out_feat, normalize=True):
|
|
layers = [nn.Linear(in_feat, out_feat)]
|
|
if normalize:
|
|
layers.append(nn.BatchNorm1d(out_feat, 0.8))
|
|
layers.append(nn.LeakyReLU(0.2))
|
|
return layers
|
|
self.model = nn.Sequential(*block((opt.latent_dim + opt.n_classes), 128, normalize=False), *block(128, 256), *block(256, 512), *block(512, 1024), nn.Linear(1024, int(np.prod(img_shape))), nn.Tanh())
|
|
|
|
def execute(self, noise, labels):
|
|
gen_input = jt.contrib.concat((self.label_emb(labels), noise), dim=1)
|
|
img = self.model(gen_input)
|
|
img = img.view((img.shape[0], *img_shape))
|
|
return img
|
|
|
|
class Discriminator(nn.Module):
|
|
|
|
def __init__(self):
|
|
super(Discriminator, self).__init__()
|
|
self.label_embedding = nn.Embedding(opt.n_classes, opt.n_classes)
|
|
self.model = nn.Sequential(nn.Linear((opt.n_classes + int(np.prod(img_shape))), 512), nn.LeakyReLU(0.2), nn.Linear(512, 512), nn.Dropout(0.4), nn.LeakyReLU(0.2), nn.Linear(512, 512), nn.Dropout(0.4), nn.LeakyReLU(0.2), nn.Linear(512, 1))
|
|
|
|
def execute(self, img, labels):
|
|
d_in = jt.contrib.concat((img.view((img.shape[0], (- 1))), self.label_embedding(labels)), dim=1)
|
|
validity = self.model(d_in)
|
|
return validity
|
|
|
|
# Loss functions
|
|
adversarial_loss = nn.MSELoss()
|
|
|
|
generator = Generator()
|
|
discriminator = Discriminator()
|
|
|
|
# Configure data loader
|
|
from jittor.dataset.mnist import MNIST
|
|
import jittor.transform as transform
|
|
transform = transform.Compose([
|
|
transform.Resize(opt.img_size),
|
|
transform.Gray(),
|
|
transform.ImageNormalize(mean=[0.5], std=[0.5]),
|
|
])
|
|
dataloader = MNIST(train=True, transform=transform).set_attrs(batch_size=opt.batch_size, shuffle=True)
|
|
|
|
optimizer_G = nn.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
|
|
optimizer_D = nn.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
|
|
|
|
os.makedirs("images", exist_ok=True)
|
|
os.makedirs("saved_models", exist_ok=True)
|
|
|
|
from PIL import Image
|
|
def save_image(img, path, nrow=10, padding=5):
|
|
N,C,W,H = img.shape
|
|
if (N%nrow!=0):
|
|
print("N%nrow!=0")
|
|
return
|
|
ncol=int(N/nrow)
|
|
img_all = []
|
|
for i in range(ncol):
|
|
img_ = []
|
|
for j in range(nrow):
|
|
img_.append(img[i*nrow+j])
|
|
img_.append(np.zeros((C,W,padding)))
|
|
img_all.append(np.concatenate(img_, 2))
|
|
img_all.append(np.zeros((C,padding,img_all[0].shape[2])))
|
|
img = np.concatenate(img_all, 1)
|
|
img = np.concatenate([np.zeros((C,padding,img.shape[2])), img], 1)
|
|
img = np.concatenate([np.zeros((C,img.shape[1],padding)), img], 2)
|
|
min_=img.min()
|
|
max_=img.max()
|
|
img=(img-min_)/(max_-min_)*255
|
|
img=img.transpose((1,2,0))
|
|
if C==3:
|
|
img = img[:,:,::-1]
|
|
elif C==1:
|
|
img = img[:,:,0]
|
|
Image.fromarray(np.uint8(img)).save(path)
|
|
|
|
def sample_image(n_row, batches_done):
|
|
"""Saves a grid of generated digits"""
|
|
# Sample noise
|
|
z = jt.array(np.random.normal(0, 1, (n_row ** 2, opt.latent_dim))).float32().stop_grad()
|
|
labels = jt.array(np.array([num for _ in range(n_row) for num in range(n_row)])).float32().stop_grad()
|
|
gen_imgs = generator(z, labels)
|
|
save_image(gen_imgs.numpy(), "images/%d.png" % batches_done, nrow=n_row)
|
|
|
|
# ----------
|
|
# Training
|
|
# ----------
|
|
|
|
for epoch in range(opt.n_epochs):
|
|
for i, (imgs, labels) in enumerate(dataloader):
|
|
|
|
batch_size = imgs.shape[0]
|
|
|
|
# Adversarial ground truths
|
|
valid = jt.ones([batch_size, 1]).float32().stop_grad()
|
|
fake = jt.zeros([batch_size, 1]).float32().stop_grad()
|
|
|
|
# Configure input
|
|
real_imgs = jt.array(imgs)
|
|
labels = jt.array(labels)
|
|
|
|
# -----------------
|
|
# Train Generator
|
|
# -----------------
|
|
|
|
# Sample noise and labels as generator input
|
|
z = jt.array(np.random.normal(0, 1, (batch_size, opt.latent_dim))).float32()
|
|
gen_labels = jt.array(np.random.randint(0, opt.n_classes, batch_size)).float32()
|
|
|
|
# Generate a batch of images
|
|
gen_imgs = generator(z, gen_labels)
|
|
# Loss measures generator's ability to fool the discriminator
|
|
validity = discriminator(gen_imgs, gen_labels)
|
|
g_loss = adversarial_loss(validity, valid)
|
|
g_loss.sync()
|
|
optimizer_G.step(g_loss)
|
|
|
|
# ---------------------
|
|
# Train Discriminator
|
|
# ---------------------
|
|
|
|
# Loss for real images
|
|
validity_real = discriminator(real_imgs, labels)
|
|
d_real_loss = adversarial_loss(validity_real, valid)
|
|
|
|
# Loss for fake images
|
|
validity_fake = discriminator(gen_imgs.stop_grad(), gen_labels)
|
|
d_fake_loss = adversarial_loss(validity_fake, fake)
|
|
|
|
# Total discriminator loss
|
|
d_loss = (d_real_loss + d_fake_loss) / 2
|
|
d_loss.sync()
|
|
optimizer_D.step(d_loss)
|
|
if i % 50 == 0:
|
|
print(
|
|
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
|
|
% (epoch, opt.n_epochs, i, len(dataloader), d_loss.data, g_loss.data)
|
|
)
|
|
|
|
batches_done = epoch * len(dataloader) + i
|
|
if batches_done % opt.sample_interval == 0:
|
|
sample_image(n_row=10, batches_done=batches_done)
|
|
|
|
if epoch % 10 == 0:
|
|
generator.save("saved_models/generator_last.pkl")
|
|
discriminator.save("saved_models/discriminator_last.pkl")
|