riscv-pke/kernel/strap.c

119 lines
3.9 KiB
C

/*
* Utility functions for trap handling in Supervisor mode.
*/
#include "riscv.h"
#include "process.h"
#include "strap.h"
#include "syscall.h"
#include "pmm.h"
#include "vmm.h"
#include "sched.h"
#include "util/functions.h"
#include "spike_interface/spike_utils.h"
//
// handling the syscalls. will call do_syscall() defined in kernel/syscall.c
//
static void handle_syscall(trapframe *tf) {
// tf->epc points to the address that our computer will jump to after the trap handling.
// for a syscall, we should return to the NEXT instruction after its handling.
// in RV64G, each instruction occupies exactly 32 bits (i.e., 4 Bytes)
tf->epc += 4;
// TODO (lab1_1): remove the panic call below, and call do_syscall (defined in
// kernel/syscall.c) to conduct real operations of the kernel side for a syscall.
// IMPORTANT: return value should be returned to user app, or else, you will encounter
// problems in later experiments!
panic( "call do_syscall to accomplish the syscall and lab1_1 here.\n" );
}
//
// global variable that store the recorded "ticks"
static uint64 g_ticks = 0;
void handle_mtimer_trap() {
sprint("Ticks %d\n", g_ticks);
// TODO (lab1_3): increase g_ticks to record this "tick", and then clear the "SIP"
// field in sip register.
// hint: use write_csr to disable the SIP_SSIP bit in sip.
panic( "lab1_3: increase g_ticks by one, and clear SIP field in sip register.\n" );
}
//
// the page fault handler. the parameters:
// sepc: the pc when fault happens;
// stval: the virtual address that causes pagefault when being accessed.
//
void handle_user_page_fault(uint64 mcause, uint64 sepc, uint64 stval) {
sprint("handle_page_fault: %lx\n", stval);
switch (mcause) {
case CAUSE_STORE_PAGE_FAULT:
// TODO (lab2_3): implement the operations that solve the page fault to
// dynamically increase application stack.
// hint: first allocate a new physical page, and then, maps the new page to the
// virtual address that causes the page fault.
panic( "You need to implement the operations that actually handle the page fault in lab2_3.\n" );
break;
default:
sprint("unknown page fault.\n");
break;
}
}
//
// implements round-robin scheduling
//
void rrsched() {
// TODO (lab3_3): implements round-robin scheduling.
// hint: increase the tick_count member of current process by one, if it is bigger than
// TIME_SLICE_LEN (means it has consumed its time slice), change its status into READY,
// place it in the rear of ready queue, and finally schedule next process to run.
panic( "You need to further implement the timer handling in lab3_3.\n" );
}
//
// kernel/smode_trap.S will pass control to smode_trap_handler, when a trap happens
// in S-mode.
//
void smode_trap_handler(void) {
// make sure we are in User mode before entering the trap handling.
// we will consider other previous case in lab1_3 (interrupt).
if ((read_csr(sstatus) & SSTATUS_SPP) != 0) panic("usertrap: not from user mode");
assert(current);
// save user process counter.
current->trapframe->epc = read_csr(sepc);
// if the cause of trap is syscall from user application
uint64 cause = read_csr(scause);
switch (cause) {
case CAUSE_USER_ECALL:
handle_syscall(current->trapframe);
break;
case CAUSE_MTIMER_S_TRAP:
handle_mtimer_trap();
rrsched();
break;
case CAUSE_STORE_PAGE_FAULT:
case CAUSE_LOAD_PAGE_FAULT:
// the address of missing page is stored in stval
// call handle_user_page_fault to process page faults
handle_user_page_fault(cause, read_csr(sepc), read_csr(stval));
break;
default:
sprint("smode_trap_handler(): unexpected scause %p\n", read_csr(scause));
sprint(" sepc=%p stval=%p\n", read_csr(sepc), read_csr(stval));
panic( "unexpected exception happened.\n" );
break;
}
// continue the execution of current process.
switch_to(current);
}