openGauss-server/contrib/pgcrypto/crypt-des.cpp

1322 lines
28 KiB
C++

/*
* FreeSec: libcrypt for NetBSD
*
* contrib/pgcrypto/crypt-des.c
*
* Copyright (c) 1994 David Burren
* All rights reserved.
*
* Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
* this file should now *only* export crypt(), in order to make
* binaries of libcrypt exportable from the USA
*
* Adapted for FreeBSD-4.0 by Mark R V Murray
* this file should now *only* export crypt_des(), in order to make
* a module that can be optionally included in libcrypt.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of other contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD: src/secure/lib/libcrypt/crypt-des.c,v 1.12 1999/09/20 12:39:20 markm Exp $
*
* This is an original implementation of the DES and the crypt(3) interfaces
* by David Burren <davidb@werj.com.au>.
*
* An excellent reference on the underlying algorithm (and related
* algorithms) is:
*
* B. Schneier, Applied Cryptography: protocols, algorithms,
* and source code in C, John Wiley & Sons, 1994.
*
* Note that in that book's description of DES the lookups for the initial,
* pbox, and final permutations are inverted (this has been brought to the
* attention of the author). A list of errata for this book has been
* posted to the sci.crypt newsgroup by the author and is available for FTP.
*
* ARCHITECTURE ASSUMPTIONS:
* It is assumed that the 8-byte arrays passed by reference can be
* addressed as arrays of uint32's (ie. the CPU is not picky about
* alignment).
*/
#include "postgres.h"
#include "knl/knl_variable.h"
#include "px-crypt.h"
/* for ntohl/htonl */
#include <netinet/in.h>
#include <arpa/inet.h>
#define _PASSWORD_EFMT1 '_'
static const char _crypt_a64[] = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
static uint8 IP[64] = {58,
50,
42,
34,
26,
18,
10,
2,
60,
52,
44,
36,
28,
20,
12,
4,
62,
54,
46,
38,
30,
22,
14,
6,
64,
56,
48,
40,
32,
24,
16,
8,
57,
49,
41,
33,
25,
17,
9,
1,
59,
51,
43,
35,
27,
19,
11,
3,
61,
53,
45,
37,
29,
21,
13,
5,
63,
55,
47,
39,
31,
23,
15,
7};
static uint8 inv_key_perm[64];
static uint8 u_key_perm[56];
static uint8 key_perm[56] = {57,
49,
41,
33,
25,
17,
9,
1,
58,
50,
42,
34,
26,
18,
10,
2,
59,
51,
43,
35,
27,
19,
11,
3,
60,
52,
44,
36,
63,
55,
47,
39,
31,
23,
15,
7,
62,
54,
46,
38,
30,
22,
14,
6,
61,
53,
45,
37,
29,
21,
13,
5,
28,
20,
12,
4};
static uint8 key_shifts[16] = {1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1};
static uint8 inv_comp_perm[56];
static uint8 comp_perm[48] = {14,
17,
11,
24,
1,
5,
3,
28,
15,
6,
21,
10,
23,
19,
12,
4,
26,
8,
16,
7,
27,
20,
13,
2,
41,
52,
31,
37,
47,
55,
30,
40,
51,
45,
33,
48,
44,
49,
39,
56,
34,
53,
46,
42,
50,
36,
29,
32};
/*
* No E box is used, as it's replaced by some ANDs, shifts, and ORs.
*/
static uint8 u_sbox[8][64];
static uint8 sbox[8][64] = {{14,
4,
13,
1,
2,
15,
11,
8,
3,
10,
6,
12,
5,
9,
0,
7,
0,
15,
7,
4,
14,
2,
13,
1,
10,
6,
12,
11,
9,
5,
3,
8,
4,
1,
14,
8,
13,
6,
2,
11,
15,
12,
9,
7,
3,
10,
5,
0,
15,
12,
8,
2,
4,
9,
1,
7,
5,
11,
3,
14,
10,
0,
6,
13},
{15,
1,
8,
14,
6,
11,
3,
4,
9,
7,
2,
13,
12,
0,
5,
10,
3,
13,
4,
7,
15,
2,
8,
14,
12,
0,
1,
10,
6,
9,
11,
5,
0,
14,
7,
11,
10,
4,
13,
1,
5,
8,
12,
6,
9,
3,
2,
15,
13,
8,
10,
1,
3,
15,
4,
2,
11,
6,
7,
12,
0,
5,
14,
9},
{10,
0,
9,
14,
6,
3,
15,
5,
1,
13,
12,
7,
11,
4,
2,
8,
13,
7,
0,
9,
3,
4,
6,
10,
2,
8,
5,
14,
12,
11,
15,
1,
13,
6,
4,
9,
8,
15,
3,
0,
11,
1,
2,
12,
5,
10,
14,
7,
1,
10,
13,
0,
6,
9,
8,
7,
4,
15,
14,
3,
11,
5,
2,
12},
{7,
13,
14,
3,
0,
6,
9,
10,
1,
2,
8,
5,
11,
12,
4,
15,
13,
8,
11,
5,
6,
15,
0,
3,
4,
7,
2,
12,
1,
10,
14,
9,
10,
6,
9,
0,
12,
11,
7,
13,
15,
1,
3,
14,
5,
2,
8,
4,
3,
15,
0,
6,
10,
1,
13,
8,
9,
4,
5,
11,
12,
7,
2,
14},
{2,
12,
4,
1,
7,
10,
11,
6,
8,
5,
3,
15,
13,
0,
14,
9,
14,
11,
2,
12,
4,
7,
13,
1,
5,
0,
15,
10,
3,
9,
8,
6,
4,
2,
1,
11,
10,
13,
7,
8,
15,
9,
12,
5,
6,
3,
0,
14,
11,
8,
12,
7,
1,
14,
2,
13,
6,
15,
0,
9,
10,
4,
5,
3},
{12,
1,
10,
15,
9,
2,
6,
8,
0,
13,
3,
4,
14,
7,
5,
11,
10,
15,
4,
2,
7,
12,
9,
5,
6,
1,
13,
14,
0,
11,
3,
8,
9,
14,
15,
5,
2,
8,
12,
3,
7,
0,
4,
10,
1,
13,
11,
6,
4,
3,
2,
12,
9,
5,
15,
10,
11,
14,
1,
7,
6,
0,
8,
13},
{4,
11,
2,
14,
15,
0,
8,
13,
3,
12,
9,
7,
5,
10,
6,
1,
13,
0,
11,
7,
4,
9,
1,
10,
14,
3,
5,
12,
2,
15,
8,
6,
1,
4,
11,
13,
12,
3,
7,
14,
10,
15,
6,
8,
0,
5,
9,
2,
6,
11,
13,
8,
1,
4,
10,
7,
9,
5,
0,
15,
14,
2,
3,
12},
{13,
2,
8,
4,
6,
15,
11,
1,
10,
9,
3,
14,
5,
0,
12,
7,
1,
15,
13,
8,
10,
3,
7,
4,
12,
5,
6,
11,
0,
14,
9,
2,
7,
11,
4,
1,
9,
12,
14,
2,
0,
6,
10,
13,
15,
3,
5,
8,
2,
1,
14,
7,
4,
10,
8,
13,
15,
12,
9,
0,
3,
5,
6,
11}};
static uint8 un_pbox[32];
static uint8 pbox[32] = {16,
7,
20,
21,
29,
12,
28,
17,
1,
15,
23,
26,
5,
18,
31,
10,
2,
8,
24,
14,
32,
27,
3,
9,
19,
13,
30,
6,
22,
11,
4,
25};
static uint32 _crypt_bits32[32] = {0x80000000,
0x40000000,
0x20000000,
0x10000000,
0x08000000,
0x04000000,
0x02000000,
0x01000000,
0x00800000,
0x00400000,
0x00200000,
0x00100000,
0x00080000,
0x00040000,
0x00020000,
0x00010000,
0x00008000,
0x00004000,
0x00002000,
0x00001000,
0x00000800,
0x00000400,
0x00000200,
0x00000100,
0x00000080,
0x00000040,
0x00000020,
0x00000010,
0x00000008,
0x00000004,
0x00000002,
0x00000001};
static uint8 _crypt_bits8[8] = {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
static uint32 saltbits;
static long old_salt;
static uint32 *bits28, *bits24;
static uint8 init_perm[64], final_perm[64];
static uint32 en_keysl[16], en_keysr[16];
static uint32 de_keysl[16], de_keysr[16];
static int des_initialised = 0;
static uint8 m_sbox[4][4096];
static uint32 psbox[4][256];
static uint32 ip_maskl[8][256], ip_maskr[8][256];
static uint32 fp_maskl[8][256], fp_maskr[8][256];
static uint32 key_perm_maskl[8][128], key_perm_maskr[8][128];
static uint32 comp_maskl[8][128], comp_maskr[8][128];
static uint32 old_rawkey0, old_rawkey1;
static inline int ascii_to_bin(char ch)
{
if (ch > 'z')
return (0);
if (ch >= 'a')
return (ch - 'a' + 38);
if (ch > 'Z')
return (0);
if (ch >= 'A')
return (ch - 'A' + 12);
if (ch > '9')
return (0);
if (ch >= '.')
return (ch - '.');
return (0);
}
static void des_init(void)
{
int i, j, b, k, inbit, obit;
uint32 *p, *il, *ir, *fl, *fr;
old_rawkey0 = old_rawkey1 = 0L;
saltbits = 0L;
old_salt = 0L;
bits24 = (bits28 = _crypt_bits32 + 4) + 4;
/*
* Invert the S-boxes, reordering the input bits.
*/
for (i = 0; i < 8; i++)
for (j = 0; j < 64; j++) {
b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
u_sbox[i][j] = sbox[i][b];
}
/*
* Convert the inverted S-boxes into 4 arrays of 8 bits. Each will handle
* 12 bits of the S-box input.
*/
for (b = 0; b < 4; b++)
for (i = 0; i < 64; i++)
for (j = 0; j < 64; j++)
m_sbox[b][(i << 6) | j] = (u_sbox[(b << 1)][i] << 4) | u_sbox[(b << 1) + 1][j];
/*
* Set up the initial & final permutations into a useful form, and
* initialise the inverted key permutation.
*/
for (i = 0; i < 64; i++) {
init_perm[final_perm[i] = IP[i] - 1] = i;
inv_key_perm[i] = 255;
}
/*
* Invert the key permutation and initialise the inverted key compression
* permutation.
*/
for (i = 0; i < 56; i++) {
u_key_perm[i] = key_perm[i] - 1;
inv_key_perm[key_perm[i] - 1] = i;
inv_comp_perm[i] = 255;
}
/*
* Invert the key compression permutation.
*/
for (i = 0; i < 48; i++)
inv_comp_perm[comp_perm[i] - 1] = i;
/*
* Set up the OR-mask arrays for the initial and final permutations, and
* for the key initial and compression permutations.
*/
for (k = 0; k < 8; k++) {
for (i = 0; i < 256; i++) {
*(il = &ip_maskl[k][i]) = 0L;
*(ir = &ip_maskr[k][i]) = 0L;
*(fl = &fp_maskl[k][i]) = 0L;
*(fr = &fp_maskr[k][i]) = 0L;
for (j = 0; j < 8; j++) {
inbit = 8 * k + j;
if (i & _crypt_bits8[j]) {
if ((obit = init_perm[inbit]) < 32)
*il |= _crypt_bits32[obit];
else
*ir |= _crypt_bits32[obit - 32];
if ((obit = final_perm[inbit]) < 32)
*fl |= _crypt_bits32[obit];
else
*fr |= _crypt_bits32[obit - 32];
}
}
}
for (i = 0; i < 128; i++) {
*(il = &key_perm_maskl[k][i]) = 0L;
*(ir = &key_perm_maskr[k][i]) = 0L;
for (j = 0; j < 7; j++) {
inbit = 8 * k + j;
if (i & _crypt_bits8[j + 1]) {
if ((obit = inv_key_perm[inbit]) == 255)
continue;
if (obit < 28)
*il |= bits28[obit];
else
*ir |= bits28[obit - 28];
}
}
*(il = &comp_maskl[k][i]) = 0L;
*(ir = &comp_maskr[k][i]) = 0L;
for (j = 0; j < 7; j++) {
inbit = 7 * k + j;
if (i & _crypt_bits8[j + 1]) {
if ((obit = inv_comp_perm[inbit]) == 255)
continue;
if (obit < 24)
*il |= bits24[obit];
else
*ir |= bits24[obit - 24];
}
}
}
}
/*
* Invert the P-box permutation, and convert into OR-masks for handling
* the output of the S-box arrays setup above.
*/
for (i = 0; i < 32; i++)
un_pbox[pbox[i] - 1] = i;
for (b = 0; b < 4; b++)
for (i = 0; i < 256; i++) {
*(p = &psbox[b][i]) = 0L;
for (j = 0; j < 8; j++) {
if (i & _crypt_bits8[j])
*p |= _crypt_bits32[un_pbox[8 * b + j]];
}
}
des_initialised = 1;
}
static void setup_salt(long salt)
{
uint32 obit, saltbit;
int i;
if (salt == old_salt)
return;
old_salt = salt;
saltbits = 0L;
saltbit = 1;
obit = 0x800000;
for (i = 0; i < 24; i++) {
if (salt & saltbit)
saltbits |= obit;
saltbit <<= 1;
obit >>= 1;
}
}
static int des_setkey(const char* key)
{
uint32 k0, k1, rawkey0, rawkey1;
int shifts, round;
if (!des_initialised)
des_init();
rawkey0 = ntohl(*(const uint32*)key);
rawkey1 = ntohl(*(const uint32*)(key + 4));
if ((rawkey0 | rawkey1) && rawkey0 == old_rawkey0 && rawkey1 == old_rawkey1) {
/*
* Already setup for this key. This optimisation fails on a zero key
* (which is weak and has bad parity anyway) in order to simplify the
* starting conditions.
*/
return (0);
}
old_rawkey0 = rawkey0;
old_rawkey1 = rawkey1;
/*
* Do key permutation and split into two 28-bit subkeys.
*/
k0 = key_perm_maskl[0][rawkey0 >> 25] | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f] |
key_perm_maskl[2][(rawkey0 >> 9) & 0x7f] | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f] |
key_perm_maskl[4][rawkey1 >> 25] | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f] |
key_perm_maskl[6][(rawkey1 >> 9) & 0x7f] | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
k1 = key_perm_maskr[0][rawkey0 >> 25] | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f] |
key_perm_maskr[2][(rawkey0 >> 9) & 0x7f] | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f] |
key_perm_maskr[4][rawkey1 >> 25] | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f] |
key_perm_maskr[6][(rawkey1 >> 9) & 0x7f] | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
/*
* Rotate subkeys and do compression permutation.
*/
shifts = 0;
for (round = 0; round < 16; round++) {
uint32 t0, t1;
shifts += key_shifts[round];
t0 = (k0 << shifts) | (k0 >> (28 - shifts));
t1 = (k1 << shifts) | (k1 >> (28 - shifts));
de_keysl[15 - round] = en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f] | comp_maskl[1][(t0 >> 14) & 0x7f] |
comp_maskl[2][(t0 >> 7) & 0x7f] | comp_maskl[3][t0 & 0x7f] |
comp_maskl[4][(t1 >> 21) & 0x7f] | comp_maskl[5][(t1 >> 14) & 0x7f] |
comp_maskl[6][(t1 >> 7) & 0x7f] | comp_maskl[7][t1 & 0x7f];
de_keysr[15 - round] = en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f] | comp_maskr[1][(t0 >> 14) & 0x7f] |
comp_maskr[2][(t0 >> 7) & 0x7f] | comp_maskr[3][t0 & 0x7f] |
comp_maskr[4][(t1 >> 21) & 0x7f] | comp_maskr[5][(t1 >> 14) & 0x7f] |
comp_maskr[6][(t1 >> 7) & 0x7f] | comp_maskr[7][t1 & 0x7f];
}
return (0);
}
static int do_des(uint32 l_in, uint32 r_in, uint32* l_out, uint32* r_out, int count)
{
/*
* l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
*/
uint32 l, r, *kl, *kr, *kl1, *kr1;
uint32 f, r48l, r48r;
int round;
if (count == 0)
return (1);
else if (count > 0) {
/*
* Encrypting
*/
kl1 = en_keysl;
kr1 = en_keysr;
} else {
/*
* Decrypting
*/
count = -count;
kl1 = de_keysl;
kr1 = de_keysr;
}
/*
* Do initial permutation (IP).
*/
l = ip_maskl[0][l_in >> 24] | ip_maskl[1][(l_in >> 16) & 0xff] | ip_maskl[2][(l_in >> 8) & 0xff] |
ip_maskl[3][l_in & 0xff] | ip_maskl[4][r_in >> 24] | ip_maskl[5][(r_in >> 16) & 0xff] |
ip_maskl[6][(r_in >> 8) & 0xff] | ip_maskl[7][r_in & 0xff];
r = ip_maskr[0][l_in >> 24] | ip_maskr[1][(l_in >> 16) & 0xff] | ip_maskr[2][(l_in >> 8) & 0xff] |
ip_maskr[3][l_in & 0xff] | ip_maskr[4][r_in >> 24] | ip_maskr[5][(r_in >> 16) & 0xff] |
ip_maskr[6][(r_in >> 8) & 0xff] | ip_maskr[7][r_in & 0xff];
while (count--) {
/*
* Do each round.
*/
kl = kl1;
kr = kr1;
round = 16;
while (round--) {
/*
* Expand R to 48 bits (simulate the E-box).
*/
r48l = ((r & 0x00000001) << 23) | ((r & 0xf8000000) >> 9) | ((r & 0x1f800000) >> 11) |
((r & 0x01f80000) >> 13) | ((r & 0x001f8000) >> 15);
r48r = ((r & 0x0001f800) << 7) | ((r & 0x00001f80) << 5) | ((r & 0x000001f8) << 3) |
((r & 0x0000001f) << 1) | ((r & 0x80000000) >> 31);
/*
* Do salting for crypt() and friends, and XOR with the permuted
* key.
*/
f = (r48l ^ r48r) & saltbits;
r48l ^= f ^ *kl++;
r48r ^= f ^ *kr++;
/*
* Do sbox lookups (which shrink it back to 32 bits) and do the
* pbox permutation at the same time.
*/
f = psbox[0][m_sbox[0][r48l >> 12]] | psbox[1][m_sbox[1][r48l & 0xfff]] | psbox[2][m_sbox[2][r48r >> 12]] |
psbox[3][m_sbox[3][r48r & 0xfff]];
/*
* Now that we've permuted things, complete f().
*/
f ^= l;
l = r;
r = f;
}
r = l;
l = f;
}
/*
* Do final permutation (inverse of IP).
*/
*l_out = fp_maskl[0][l >> 24] | fp_maskl[1][(l >> 16) & 0xff] | fp_maskl[2][(l >> 8) & 0xff] |
fp_maskl[3][l & 0xff] | fp_maskl[4][r >> 24] | fp_maskl[5][(r >> 16) & 0xff] |
fp_maskl[6][(r >> 8) & 0xff] | fp_maskl[7][r & 0xff];
*r_out = fp_maskr[0][l >> 24] | fp_maskr[1][(l >> 16) & 0xff] | fp_maskr[2][(l >> 8) & 0xff] |
fp_maskr[3][l & 0xff] | fp_maskr[4][r >> 24] | fp_maskr[5][(r >> 16) & 0xff] |
fp_maskr[6][(r >> 8) & 0xff] | fp_maskr[7][r & 0xff];
return (0);
}
static int des_cipher(const char* in, char* out, long salt, int count)
{
uint32 buffer[2];
uint32 l_out, r_out, rawl, rawr;
int retval;
if (!des_initialised)
des_init();
setup_salt(salt);
/* copy data to avoid assuming input is word-aligned */
memcpy(buffer, in, sizeof(buffer));
rawl = ntohl(buffer[0]);
rawr = ntohl(buffer[1]);
retval = do_des(rawl, rawr, &l_out, &r_out, count);
buffer[0] = htonl(l_out);
buffer[1] = htonl(r_out);
/* copy data to avoid assuming output is word-aligned */
memcpy(out, buffer, sizeof(buffer));
return (retval);
}
char* px_crypt_des(const char* key, const char* setting)
{
int i;
uint32 count, salt, l, r0, r1, keybuf[2];
char* p = NULL;
uint8* q = NULL;
static char output[21];
if (!des_initialised)
des_init();
/*
* Copy the key, shifting each character up by one bit and padding with
* zeros.
*/
q = (uint8*)keybuf;
while (q - (uint8*)keybuf - 8) {
*q++ = *key << 1;
if (*key != '\0')
key++;
}
if (des_setkey((char*)keybuf))
return (NULL);
#ifndef DISABLE_XDES
if (*setting == _PASSWORD_EFMT1) {
/*
* "new"-style: setting must be a 9-character (underscore, then 4
* bytes of count, then 4 bytes of salt) string. See CRYPT(3) under
* the "Extended crypt" heading for further details.
*
* Unlimited characters of the input key are used. This is known as
* the "Extended crypt" DES method.
*
*/
if (strlen(setting) < 9)
ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("invalid salt")));
for (i = 1, count = 0L; i < 5; i++)
count |= ascii_to_bin(setting[i]) << (i - 1) * 6;
for (i = 5, salt = 0L; i < 9; i++)
salt |= ascii_to_bin(setting[i]) << (i - 5) * 6;
while (*key) {
/*
* Encrypt the key with itself.
*/
if (des_cipher((char*)keybuf, (char*)keybuf, 0L, 1))
return (NULL);
/*
* And XOR with the next 8 characters of the key.
*/
q = (uint8*)keybuf;
while (q - (uint8*)keybuf - 8 && *key)
*q++ ^= *key++ << 1;
if (des_setkey((char*)keybuf))
return (NULL);
}
strncpy(output, setting, 9);
/*
* Double check that we weren't given a short setting. If we were, the
* above code will probably have created weird values for count and
* salt, but we don't really care. Just make sure the output string
* doesn't have an extra NUL in it.
*/
output[9] = '\0';
p = output + strlen(output);
} else
#endif /* !DISABLE_XDES */
{
/*
* "old"-style: setting - 2 bytes of salt key - only up to the first 8
* characters of the input key are used.
*/
count = 25;
if (strlen(setting) < 2)
ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("invalid salt")));
salt = (ascii_to_bin(setting[1]) << 6) | ascii_to_bin(setting[0]);
output[0] = setting[0];
/*
* If the encrypted password that the salt was extracted from is only
* 1 character long, the salt will be corrupted. We need to ensure
* that the output string doesn't have an extra NUL in it!
*/
output[1] = setting[1] ? setting[1] : output[0];
p = output + 2;
}
setup_salt(salt);
/*
* Do it.
*/
if (do_des(0L, 0L, &r0, &r1, count))
return (NULL);
/*
* Now encode the result...
*/
l = (r0 >> 8);
*p++ = _crypt_a64[(l >> 18) & 0x3f];
*p++ = _crypt_a64[(l >> 12) & 0x3f];
*p++ = _crypt_a64[(l >> 6) & 0x3f];
*p++ = _crypt_a64[l & 0x3f];
l = (r0 << 16) | ((r1 >> 16) & 0xffff);
*p++ = _crypt_a64[(l >> 18) & 0x3f];
*p++ = _crypt_a64[(l >> 12) & 0x3f];
*p++ = _crypt_a64[(l >> 6) & 0x3f];
*p++ = _crypt_a64[l & 0x3f];
l = r1 << 2;
*p++ = _crypt_a64[(l >> 12) & 0x3f];
*p++ = _crypt_a64[(l >> 6) & 0x3f];
*p++ = _crypt_a64[l & 0x3f];
*p = 0;
return (output);
}