1322 lines
28 KiB
C++
1322 lines
28 KiB
C++
/*
|
|
* FreeSec: libcrypt for NetBSD
|
|
*
|
|
* contrib/pgcrypto/crypt-des.c
|
|
*
|
|
* Copyright (c) 1994 David Burren
|
|
* All rights reserved.
|
|
*
|
|
* Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
|
|
* this file should now *only* export crypt(), in order to make
|
|
* binaries of libcrypt exportable from the USA
|
|
*
|
|
* Adapted for FreeBSD-4.0 by Mark R V Murray
|
|
* this file should now *only* export crypt_des(), in order to make
|
|
* a module that can be optionally included in libcrypt.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the author nor the names of other contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD: src/secure/lib/libcrypt/crypt-des.c,v 1.12 1999/09/20 12:39:20 markm Exp $
|
|
*
|
|
* This is an original implementation of the DES and the crypt(3) interfaces
|
|
* by David Burren <davidb@werj.com.au>.
|
|
*
|
|
* An excellent reference on the underlying algorithm (and related
|
|
* algorithms) is:
|
|
*
|
|
* B. Schneier, Applied Cryptography: protocols, algorithms,
|
|
* and source code in C, John Wiley & Sons, 1994.
|
|
*
|
|
* Note that in that book's description of DES the lookups for the initial,
|
|
* pbox, and final permutations are inverted (this has been brought to the
|
|
* attention of the author). A list of errata for this book has been
|
|
* posted to the sci.crypt newsgroup by the author and is available for FTP.
|
|
*
|
|
* ARCHITECTURE ASSUMPTIONS:
|
|
* It is assumed that the 8-byte arrays passed by reference can be
|
|
* addressed as arrays of uint32's (ie. the CPU is not picky about
|
|
* alignment).
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
#include "knl/knl_variable.h"
|
|
|
|
#include "px-crypt.h"
|
|
|
|
/* for ntohl/htonl */
|
|
#include <netinet/in.h>
|
|
#include <arpa/inet.h>
|
|
|
|
#define _PASSWORD_EFMT1 '_'
|
|
|
|
static const char _crypt_a64[] = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
|
|
|
static uint8 IP[64] = {58,
|
|
50,
|
|
42,
|
|
34,
|
|
26,
|
|
18,
|
|
10,
|
|
2,
|
|
60,
|
|
52,
|
|
44,
|
|
36,
|
|
28,
|
|
20,
|
|
12,
|
|
4,
|
|
62,
|
|
54,
|
|
46,
|
|
38,
|
|
30,
|
|
22,
|
|
14,
|
|
6,
|
|
64,
|
|
56,
|
|
48,
|
|
40,
|
|
32,
|
|
24,
|
|
16,
|
|
8,
|
|
57,
|
|
49,
|
|
41,
|
|
33,
|
|
25,
|
|
17,
|
|
9,
|
|
1,
|
|
59,
|
|
51,
|
|
43,
|
|
35,
|
|
27,
|
|
19,
|
|
11,
|
|
3,
|
|
61,
|
|
53,
|
|
45,
|
|
37,
|
|
29,
|
|
21,
|
|
13,
|
|
5,
|
|
63,
|
|
55,
|
|
47,
|
|
39,
|
|
31,
|
|
23,
|
|
15,
|
|
7};
|
|
|
|
static uint8 inv_key_perm[64];
|
|
static uint8 u_key_perm[56];
|
|
static uint8 key_perm[56] = {57,
|
|
49,
|
|
41,
|
|
33,
|
|
25,
|
|
17,
|
|
9,
|
|
1,
|
|
58,
|
|
50,
|
|
42,
|
|
34,
|
|
26,
|
|
18,
|
|
10,
|
|
2,
|
|
59,
|
|
51,
|
|
43,
|
|
35,
|
|
27,
|
|
19,
|
|
11,
|
|
3,
|
|
60,
|
|
52,
|
|
44,
|
|
36,
|
|
63,
|
|
55,
|
|
47,
|
|
39,
|
|
31,
|
|
23,
|
|
15,
|
|
7,
|
|
62,
|
|
54,
|
|
46,
|
|
38,
|
|
30,
|
|
22,
|
|
14,
|
|
6,
|
|
61,
|
|
53,
|
|
45,
|
|
37,
|
|
29,
|
|
21,
|
|
13,
|
|
5,
|
|
28,
|
|
20,
|
|
12,
|
|
4};
|
|
|
|
static uint8 key_shifts[16] = {1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1};
|
|
|
|
static uint8 inv_comp_perm[56];
|
|
static uint8 comp_perm[48] = {14,
|
|
17,
|
|
11,
|
|
24,
|
|
1,
|
|
5,
|
|
3,
|
|
28,
|
|
15,
|
|
6,
|
|
21,
|
|
10,
|
|
23,
|
|
19,
|
|
12,
|
|
4,
|
|
26,
|
|
8,
|
|
16,
|
|
7,
|
|
27,
|
|
20,
|
|
13,
|
|
2,
|
|
41,
|
|
52,
|
|
31,
|
|
37,
|
|
47,
|
|
55,
|
|
30,
|
|
40,
|
|
51,
|
|
45,
|
|
33,
|
|
48,
|
|
44,
|
|
49,
|
|
39,
|
|
56,
|
|
34,
|
|
53,
|
|
46,
|
|
42,
|
|
50,
|
|
36,
|
|
29,
|
|
32};
|
|
|
|
/*
|
|
* No E box is used, as it's replaced by some ANDs, shifts, and ORs.
|
|
*/
|
|
|
|
static uint8 u_sbox[8][64];
|
|
static uint8 sbox[8][64] = {{14,
|
|
4,
|
|
13,
|
|
1,
|
|
2,
|
|
15,
|
|
11,
|
|
8,
|
|
3,
|
|
10,
|
|
6,
|
|
12,
|
|
5,
|
|
9,
|
|
0,
|
|
7,
|
|
0,
|
|
15,
|
|
7,
|
|
4,
|
|
14,
|
|
2,
|
|
13,
|
|
1,
|
|
10,
|
|
6,
|
|
12,
|
|
11,
|
|
9,
|
|
5,
|
|
3,
|
|
8,
|
|
4,
|
|
1,
|
|
14,
|
|
8,
|
|
13,
|
|
6,
|
|
2,
|
|
11,
|
|
15,
|
|
12,
|
|
9,
|
|
7,
|
|
3,
|
|
10,
|
|
5,
|
|
0,
|
|
15,
|
|
12,
|
|
8,
|
|
2,
|
|
4,
|
|
9,
|
|
1,
|
|
7,
|
|
5,
|
|
11,
|
|
3,
|
|
14,
|
|
10,
|
|
0,
|
|
6,
|
|
13},
|
|
{15,
|
|
1,
|
|
8,
|
|
14,
|
|
6,
|
|
11,
|
|
3,
|
|
4,
|
|
9,
|
|
7,
|
|
2,
|
|
13,
|
|
12,
|
|
0,
|
|
5,
|
|
10,
|
|
3,
|
|
13,
|
|
4,
|
|
7,
|
|
15,
|
|
2,
|
|
8,
|
|
14,
|
|
12,
|
|
0,
|
|
1,
|
|
10,
|
|
6,
|
|
9,
|
|
11,
|
|
5,
|
|
0,
|
|
14,
|
|
7,
|
|
11,
|
|
10,
|
|
4,
|
|
13,
|
|
1,
|
|
5,
|
|
8,
|
|
12,
|
|
6,
|
|
9,
|
|
3,
|
|
2,
|
|
15,
|
|
13,
|
|
8,
|
|
10,
|
|
1,
|
|
3,
|
|
15,
|
|
4,
|
|
2,
|
|
11,
|
|
6,
|
|
7,
|
|
12,
|
|
0,
|
|
5,
|
|
14,
|
|
9},
|
|
{10,
|
|
0,
|
|
9,
|
|
14,
|
|
6,
|
|
3,
|
|
15,
|
|
5,
|
|
1,
|
|
13,
|
|
12,
|
|
7,
|
|
11,
|
|
4,
|
|
2,
|
|
8,
|
|
13,
|
|
7,
|
|
0,
|
|
9,
|
|
3,
|
|
4,
|
|
6,
|
|
10,
|
|
2,
|
|
8,
|
|
5,
|
|
14,
|
|
12,
|
|
11,
|
|
15,
|
|
1,
|
|
13,
|
|
6,
|
|
4,
|
|
9,
|
|
8,
|
|
15,
|
|
3,
|
|
0,
|
|
11,
|
|
1,
|
|
2,
|
|
12,
|
|
5,
|
|
10,
|
|
14,
|
|
7,
|
|
1,
|
|
10,
|
|
13,
|
|
0,
|
|
6,
|
|
9,
|
|
8,
|
|
7,
|
|
4,
|
|
15,
|
|
14,
|
|
3,
|
|
11,
|
|
5,
|
|
2,
|
|
12},
|
|
{7,
|
|
13,
|
|
14,
|
|
3,
|
|
0,
|
|
6,
|
|
9,
|
|
10,
|
|
1,
|
|
2,
|
|
8,
|
|
5,
|
|
11,
|
|
12,
|
|
4,
|
|
15,
|
|
13,
|
|
8,
|
|
11,
|
|
5,
|
|
6,
|
|
15,
|
|
0,
|
|
3,
|
|
4,
|
|
7,
|
|
2,
|
|
12,
|
|
1,
|
|
10,
|
|
14,
|
|
9,
|
|
10,
|
|
6,
|
|
9,
|
|
0,
|
|
12,
|
|
11,
|
|
7,
|
|
13,
|
|
15,
|
|
1,
|
|
3,
|
|
14,
|
|
5,
|
|
2,
|
|
8,
|
|
4,
|
|
3,
|
|
15,
|
|
0,
|
|
6,
|
|
10,
|
|
1,
|
|
13,
|
|
8,
|
|
9,
|
|
4,
|
|
5,
|
|
11,
|
|
12,
|
|
7,
|
|
2,
|
|
14},
|
|
{2,
|
|
12,
|
|
4,
|
|
1,
|
|
7,
|
|
10,
|
|
11,
|
|
6,
|
|
8,
|
|
5,
|
|
3,
|
|
15,
|
|
13,
|
|
0,
|
|
14,
|
|
9,
|
|
14,
|
|
11,
|
|
2,
|
|
12,
|
|
4,
|
|
7,
|
|
13,
|
|
1,
|
|
5,
|
|
0,
|
|
15,
|
|
10,
|
|
3,
|
|
9,
|
|
8,
|
|
6,
|
|
4,
|
|
2,
|
|
1,
|
|
11,
|
|
10,
|
|
13,
|
|
7,
|
|
8,
|
|
15,
|
|
9,
|
|
12,
|
|
5,
|
|
6,
|
|
3,
|
|
0,
|
|
14,
|
|
11,
|
|
8,
|
|
12,
|
|
7,
|
|
1,
|
|
14,
|
|
2,
|
|
13,
|
|
6,
|
|
15,
|
|
0,
|
|
9,
|
|
10,
|
|
4,
|
|
5,
|
|
3},
|
|
{12,
|
|
1,
|
|
10,
|
|
15,
|
|
9,
|
|
2,
|
|
6,
|
|
8,
|
|
0,
|
|
13,
|
|
3,
|
|
4,
|
|
14,
|
|
7,
|
|
5,
|
|
11,
|
|
10,
|
|
15,
|
|
4,
|
|
2,
|
|
7,
|
|
12,
|
|
9,
|
|
5,
|
|
6,
|
|
1,
|
|
13,
|
|
14,
|
|
0,
|
|
11,
|
|
3,
|
|
8,
|
|
9,
|
|
14,
|
|
15,
|
|
5,
|
|
2,
|
|
8,
|
|
12,
|
|
3,
|
|
7,
|
|
0,
|
|
4,
|
|
10,
|
|
1,
|
|
13,
|
|
11,
|
|
6,
|
|
4,
|
|
3,
|
|
2,
|
|
12,
|
|
9,
|
|
5,
|
|
15,
|
|
10,
|
|
11,
|
|
14,
|
|
1,
|
|
7,
|
|
6,
|
|
0,
|
|
8,
|
|
13},
|
|
{4,
|
|
11,
|
|
2,
|
|
14,
|
|
15,
|
|
0,
|
|
8,
|
|
13,
|
|
3,
|
|
12,
|
|
9,
|
|
7,
|
|
5,
|
|
10,
|
|
6,
|
|
1,
|
|
13,
|
|
0,
|
|
11,
|
|
7,
|
|
4,
|
|
9,
|
|
1,
|
|
10,
|
|
14,
|
|
3,
|
|
5,
|
|
12,
|
|
2,
|
|
15,
|
|
8,
|
|
6,
|
|
1,
|
|
4,
|
|
11,
|
|
13,
|
|
12,
|
|
3,
|
|
7,
|
|
14,
|
|
10,
|
|
15,
|
|
6,
|
|
8,
|
|
0,
|
|
5,
|
|
9,
|
|
2,
|
|
6,
|
|
11,
|
|
13,
|
|
8,
|
|
1,
|
|
4,
|
|
10,
|
|
7,
|
|
9,
|
|
5,
|
|
0,
|
|
15,
|
|
14,
|
|
2,
|
|
3,
|
|
12},
|
|
{13,
|
|
2,
|
|
8,
|
|
4,
|
|
6,
|
|
15,
|
|
11,
|
|
1,
|
|
10,
|
|
9,
|
|
3,
|
|
14,
|
|
5,
|
|
0,
|
|
12,
|
|
7,
|
|
1,
|
|
15,
|
|
13,
|
|
8,
|
|
10,
|
|
3,
|
|
7,
|
|
4,
|
|
12,
|
|
5,
|
|
6,
|
|
11,
|
|
0,
|
|
14,
|
|
9,
|
|
2,
|
|
7,
|
|
11,
|
|
4,
|
|
1,
|
|
9,
|
|
12,
|
|
14,
|
|
2,
|
|
0,
|
|
6,
|
|
10,
|
|
13,
|
|
15,
|
|
3,
|
|
5,
|
|
8,
|
|
2,
|
|
1,
|
|
14,
|
|
7,
|
|
4,
|
|
10,
|
|
8,
|
|
13,
|
|
15,
|
|
12,
|
|
9,
|
|
0,
|
|
3,
|
|
5,
|
|
6,
|
|
11}};
|
|
|
|
static uint8 un_pbox[32];
|
|
static uint8 pbox[32] = {16,
|
|
7,
|
|
20,
|
|
21,
|
|
29,
|
|
12,
|
|
28,
|
|
17,
|
|
1,
|
|
15,
|
|
23,
|
|
26,
|
|
5,
|
|
18,
|
|
31,
|
|
10,
|
|
2,
|
|
8,
|
|
24,
|
|
14,
|
|
32,
|
|
27,
|
|
3,
|
|
9,
|
|
19,
|
|
13,
|
|
30,
|
|
6,
|
|
22,
|
|
11,
|
|
4,
|
|
25};
|
|
|
|
static uint32 _crypt_bits32[32] = {0x80000000,
|
|
0x40000000,
|
|
0x20000000,
|
|
0x10000000,
|
|
0x08000000,
|
|
0x04000000,
|
|
0x02000000,
|
|
0x01000000,
|
|
0x00800000,
|
|
0x00400000,
|
|
0x00200000,
|
|
0x00100000,
|
|
0x00080000,
|
|
0x00040000,
|
|
0x00020000,
|
|
0x00010000,
|
|
0x00008000,
|
|
0x00004000,
|
|
0x00002000,
|
|
0x00001000,
|
|
0x00000800,
|
|
0x00000400,
|
|
0x00000200,
|
|
0x00000100,
|
|
0x00000080,
|
|
0x00000040,
|
|
0x00000020,
|
|
0x00000010,
|
|
0x00000008,
|
|
0x00000004,
|
|
0x00000002,
|
|
0x00000001};
|
|
|
|
static uint8 _crypt_bits8[8] = {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
|
|
|
|
static uint32 saltbits;
|
|
static long old_salt;
|
|
static uint32 *bits28, *bits24;
|
|
static uint8 init_perm[64], final_perm[64];
|
|
static uint32 en_keysl[16], en_keysr[16];
|
|
static uint32 de_keysl[16], de_keysr[16];
|
|
static int des_initialised = 0;
|
|
static uint8 m_sbox[4][4096];
|
|
static uint32 psbox[4][256];
|
|
static uint32 ip_maskl[8][256], ip_maskr[8][256];
|
|
static uint32 fp_maskl[8][256], fp_maskr[8][256];
|
|
static uint32 key_perm_maskl[8][128], key_perm_maskr[8][128];
|
|
static uint32 comp_maskl[8][128], comp_maskr[8][128];
|
|
static uint32 old_rawkey0, old_rawkey1;
|
|
|
|
static inline int ascii_to_bin(char ch)
|
|
{
|
|
if (ch > 'z')
|
|
return (0);
|
|
if (ch >= 'a')
|
|
return (ch - 'a' + 38);
|
|
if (ch > 'Z')
|
|
return (0);
|
|
if (ch >= 'A')
|
|
return (ch - 'A' + 12);
|
|
if (ch > '9')
|
|
return (0);
|
|
if (ch >= '.')
|
|
return (ch - '.');
|
|
return (0);
|
|
}
|
|
|
|
static void des_init(void)
|
|
{
|
|
int i, j, b, k, inbit, obit;
|
|
uint32 *p, *il, *ir, *fl, *fr;
|
|
|
|
old_rawkey0 = old_rawkey1 = 0L;
|
|
saltbits = 0L;
|
|
old_salt = 0L;
|
|
bits24 = (bits28 = _crypt_bits32 + 4) + 4;
|
|
|
|
/*
|
|
* Invert the S-boxes, reordering the input bits.
|
|
*/
|
|
for (i = 0; i < 8; i++)
|
|
for (j = 0; j < 64; j++) {
|
|
b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
|
|
u_sbox[i][j] = sbox[i][b];
|
|
}
|
|
|
|
/*
|
|
* Convert the inverted S-boxes into 4 arrays of 8 bits. Each will handle
|
|
* 12 bits of the S-box input.
|
|
*/
|
|
for (b = 0; b < 4; b++)
|
|
for (i = 0; i < 64; i++)
|
|
for (j = 0; j < 64; j++)
|
|
m_sbox[b][(i << 6) | j] = (u_sbox[(b << 1)][i] << 4) | u_sbox[(b << 1) + 1][j];
|
|
|
|
/*
|
|
* Set up the initial & final permutations into a useful form, and
|
|
* initialise the inverted key permutation.
|
|
*/
|
|
for (i = 0; i < 64; i++) {
|
|
init_perm[final_perm[i] = IP[i] - 1] = i;
|
|
inv_key_perm[i] = 255;
|
|
}
|
|
|
|
/*
|
|
* Invert the key permutation and initialise the inverted key compression
|
|
* permutation.
|
|
*/
|
|
for (i = 0; i < 56; i++) {
|
|
u_key_perm[i] = key_perm[i] - 1;
|
|
inv_key_perm[key_perm[i] - 1] = i;
|
|
inv_comp_perm[i] = 255;
|
|
}
|
|
|
|
/*
|
|
* Invert the key compression permutation.
|
|
*/
|
|
for (i = 0; i < 48; i++)
|
|
inv_comp_perm[comp_perm[i] - 1] = i;
|
|
|
|
/*
|
|
* Set up the OR-mask arrays for the initial and final permutations, and
|
|
* for the key initial and compression permutations.
|
|
*/
|
|
for (k = 0; k < 8; k++) {
|
|
for (i = 0; i < 256; i++) {
|
|
*(il = &ip_maskl[k][i]) = 0L;
|
|
*(ir = &ip_maskr[k][i]) = 0L;
|
|
*(fl = &fp_maskl[k][i]) = 0L;
|
|
*(fr = &fp_maskr[k][i]) = 0L;
|
|
for (j = 0; j < 8; j++) {
|
|
inbit = 8 * k + j;
|
|
if (i & _crypt_bits8[j]) {
|
|
if ((obit = init_perm[inbit]) < 32)
|
|
*il |= _crypt_bits32[obit];
|
|
else
|
|
*ir |= _crypt_bits32[obit - 32];
|
|
if ((obit = final_perm[inbit]) < 32)
|
|
*fl |= _crypt_bits32[obit];
|
|
else
|
|
*fr |= _crypt_bits32[obit - 32];
|
|
}
|
|
}
|
|
}
|
|
for (i = 0; i < 128; i++) {
|
|
*(il = &key_perm_maskl[k][i]) = 0L;
|
|
*(ir = &key_perm_maskr[k][i]) = 0L;
|
|
for (j = 0; j < 7; j++) {
|
|
inbit = 8 * k + j;
|
|
if (i & _crypt_bits8[j + 1]) {
|
|
if ((obit = inv_key_perm[inbit]) == 255)
|
|
continue;
|
|
if (obit < 28)
|
|
*il |= bits28[obit];
|
|
else
|
|
*ir |= bits28[obit - 28];
|
|
}
|
|
}
|
|
*(il = &comp_maskl[k][i]) = 0L;
|
|
*(ir = &comp_maskr[k][i]) = 0L;
|
|
for (j = 0; j < 7; j++) {
|
|
inbit = 7 * k + j;
|
|
if (i & _crypt_bits8[j + 1]) {
|
|
if ((obit = inv_comp_perm[inbit]) == 255)
|
|
continue;
|
|
if (obit < 24)
|
|
*il |= bits24[obit];
|
|
else
|
|
*ir |= bits24[obit - 24];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Invert the P-box permutation, and convert into OR-masks for handling
|
|
* the output of the S-box arrays setup above.
|
|
*/
|
|
for (i = 0; i < 32; i++)
|
|
un_pbox[pbox[i] - 1] = i;
|
|
|
|
for (b = 0; b < 4; b++)
|
|
for (i = 0; i < 256; i++) {
|
|
*(p = &psbox[b][i]) = 0L;
|
|
for (j = 0; j < 8; j++) {
|
|
if (i & _crypt_bits8[j])
|
|
*p |= _crypt_bits32[un_pbox[8 * b + j]];
|
|
}
|
|
}
|
|
|
|
des_initialised = 1;
|
|
}
|
|
|
|
static void setup_salt(long salt)
|
|
{
|
|
uint32 obit, saltbit;
|
|
int i;
|
|
|
|
if (salt == old_salt)
|
|
return;
|
|
old_salt = salt;
|
|
|
|
saltbits = 0L;
|
|
saltbit = 1;
|
|
obit = 0x800000;
|
|
for (i = 0; i < 24; i++) {
|
|
if (salt & saltbit)
|
|
saltbits |= obit;
|
|
saltbit <<= 1;
|
|
obit >>= 1;
|
|
}
|
|
}
|
|
|
|
static int des_setkey(const char* key)
|
|
{
|
|
uint32 k0, k1, rawkey0, rawkey1;
|
|
int shifts, round;
|
|
|
|
if (!des_initialised)
|
|
des_init();
|
|
|
|
rawkey0 = ntohl(*(const uint32*)key);
|
|
rawkey1 = ntohl(*(const uint32*)(key + 4));
|
|
|
|
if ((rawkey0 | rawkey1) && rawkey0 == old_rawkey0 && rawkey1 == old_rawkey1) {
|
|
/*
|
|
* Already setup for this key. This optimisation fails on a zero key
|
|
* (which is weak and has bad parity anyway) in order to simplify the
|
|
* starting conditions.
|
|
*/
|
|
return (0);
|
|
}
|
|
old_rawkey0 = rawkey0;
|
|
old_rawkey1 = rawkey1;
|
|
|
|
/*
|
|
* Do key permutation and split into two 28-bit subkeys.
|
|
*/
|
|
k0 = key_perm_maskl[0][rawkey0 >> 25] | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f] |
|
|
key_perm_maskl[2][(rawkey0 >> 9) & 0x7f] | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f] |
|
|
key_perm_maskl[4][rawkey1 >> 25] | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f] |
|
|
key_perm_maskl[6][(rawkey1 >> 9) & 0x7f] | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
|
|
k1 = key_perm_maskr[0][rawkey0 >> 25] | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f] |
|
|
key_perm_maskr[2][(rawkey0 >> 9) & 0x7f] | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f] |
|
|
key_perm_maskr[4][rawkey1 >> 25] | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f] |
|
|
key_perm_maskr[6][(rawkey1 >> 9) & 0x7f] | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
|
|
|
|
/*
|
|
* Rotate subkeys and do compression permutation.
|
|
*/
|
|
shifts = 0;
|
|
for (round = 0; round < 16; round++) {
|
|
uint32 t0, t1;
|
|
|
|
shifts += key_shifts[round];
|
|
|
|
t0 = (k0 << shifts) | (k0 >> (28 - shifts));
|
|
t1 = (k1 << shifts) | (k1 >> (28 - shifts));
|
|
|
|
de_keysl[15 - round] = en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f] | comp_maskl[1][(t0 >> 14) & 0x7f] |
|
|
comp_maskl[2][(t0 >> 7) & 0x7f] | comp_maskl[3][t0 & 0x7f] |
|
|
comp_maskl[4][(t1 >> 21) & 0x7f] | comp_maskl[5][(t1 >> 14) & 0x7f] |
|
|
comp_maskl[6][(t1 >> 7) & 0x7f] | comp_maskl[7][t1 & 0x7f];
|
|
|
|
de_keysr[15 - round] = en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f] | comp_maskr[1][(t0 >> 14) & 0x7f] |
|
|
comp_maskr[2][(t0 >> 7) & 0x7f] | comp_maskr[3][t0 & 0x7f] |
|
|
comp_maskr[4][(t1 >> 21) & 0x7f] | comp_maskr[5][(t1 >> 14) & 0x7f] |
|
|
comp_maskr[6][(t1 >> 7) & 0x7f] | comp_maskr[7][t1 & 0x7f];
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int do_des(uint32 l_in, uint32 r_in, uint32* l_out, uint32* r_out, int count)
|
|
{
|
|
/*
|
|
* l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
|
|
*/
|
|
uint32 l, r, *kl, *kr, *kl1, *kr1;
|
|
uint32 f, r48l, r48r;
|
|
int round;
|
|
|
|
if (count == 0)
|
|
return (1);
|
|
else if (count > 0) {
|
|
/*
|
|
* Encrypting
|
|
*/
|
|
kl1 = en_keysl;
|
|
kr1 = en_keysr;
|
|
} else {
|
|
/*
|
|
* Decrypting
|
|
*/
|
|
count = -count;
|
|
kl1 = de_keysl;
|
|
kr1 = de_keysr;
|
|
}
|
|
|
|
/*
|
|
* Do initial permutation (IP).
|
|
*/
|
|
l = ip_maskl[0][l_in >> 24] | ip_maskl[1][(l_in >> 16) & 0xff] | ip_maskl[2][(l_in >> 8) & 0xff] |
|
|
ip_maskl[3][l_in & 0xff] | ip_maskl[4][r_in >> 24] | ip_maskl[5][(r_in >> 16) & 0xff] |
|
|
ip_maskl[6][(r_in >> 8) & 0xff] | ip_maskl[7][r_in & 0xff];
|
|
r = ip_maskr[0][l_in >> 24] | ip_maskr[1][(l_in >> 16) & 0xff] | ip_maskr[2][(l_in >> 8) & 0xff] |
|
|
ip_maskr[3][l_in & 0xff] | ip_maskr[4][r_in >> 24] | ip_maskr[5][(r_in >> 16) & 0xff] |
|
|
ip_maskr[6][(r_in >> 8) & 0xff] | ip_maskr[7][r_in & 0xff];
|
|
|
|
while (count--) {
|
|
/*
|
|
* Do each round.
|
|
*/
|
|
kl = kl1;
|
|
kr = kr1;
|
|
round = 16;
|
|
while (round--) {
|
|
/*
|
|
* Expand R to 48 bits (simulate the E-box).
|
|
*/
|
|
r48l = ((r & 0x00000001) << 23) | ((r & 0xf8000000) >> 9) | ((r & 0x1f800000) >> 11) |
|
|
((r & 0x01f80000) >> 13) | ((r & 0x001f8000) >> 15);
|
|
|
|
r48r = ((r & 0x0001f800) << 7) | ((r & 0x00001f80) << 5) | ((r & 0x000001f8) << 3) |
|
|
((r & 0x0000001f) << 1) | ((r & 0x80000000) >> 31);
|
|
|
|
/*
|
|
* Do salting for crypt() and friends, and XOR with the permuted
|
|
* key.
|
|
*/
|
|
f = (r48l ^ r48r) & saltbits;
|
|
r48l ^= f ^ *kl++;
|
|
r48r ^= f ^ *kr++;
|
|
|
|
/*
|
|
* Do sbox lookups (which shrink it back to 32 bits) and do the
|
|
* pbox permutation at the same time.
|
|
*/
|
|
f = psbox[0][m_sbox[0][r48l >> 12]] | psbox[1][m_sbox[1][r48l & 0xfff]] | psbox[2][m_sbox[2][r48r >> 12]] |
|
|
psbox[3][m_sbox[3][r48r & 0xfff]];
|
|
|
|
/*
|
|
* Now that we've permuted things, complete f().
|
|
*/
|
|
f ^= l;
|
|
l = r;
|
|
r = f;
|
|
}
|
|
r = l;
|
|
l = f;
|
|
}
|
|
|
|
/*
|
|
* Do final permutation (inverse of IP).
|
|
*/
|
|
*l_out = fp_maskl[0][l >> 24] | fp_maskl[1][(l >> 16) & 0xff] | fp_maskl[2][(l >> 8) & 0xff] |
|
|
fp_maskl[3][l & 0xff] | fp_maskl[4][r >> 24] | fp_maskl[5][(r >> 16) & 0xff] |
|
|
fp_maskl[6][(r >> 8) & 0xff] | fp_maskl[7][r & 0xff];
|
|
*r_out = fp_maskr[0][l >> 24] | fp_maskr[1][(l >> 16) & 0xff] | fp_maskr[2][(l >> 8) & 0xff] |
|
|
fp_maskr[3][l & 0xff] | fp_maskr[4][r >> 24] | fp_maskr[5][(r >> 16) & 0xff] |
|
|
fp_maskr[6][(r >> 8) & 0xff] | fp_maskr[7][r & 0xff];
|
|
return (0);
|
|
}
|
|
|
|
static int des_cipher(const char* in, char* out, long salt, int count)
|
|
{
|
|
uint32 buffer[2];
|
|
uint32 l_out, r_out, rawl, rawr;
|
|
int retval;
|
|
|
|
if (!des_initialised)
|
|
des_init();
|
|
|
|
setup_salt(salt);
|
|
|
|
/* copy data to avoid assuming input is word-aligned */
|
|
memcpy(buffer, in, sizeof(buffer));
|
|
|
|
rawl = ntohl(buffer[0]);
|
|
rawr = ntohl(buffer[1]);
|
|
|
|
retval = do_des(rawl, rawr, &l_out, &r_out, count);
|
|
|
|
buffer[0] = htonl(l_out);
|
|
buffer[1] = htonl(r_out);
|
|
|
|
/* copy data to avoid assuming output is word-aligned */
|
|
memcpy(out, buffer, sizeof(buffer));
|
|
|
|
return (retval);
|
|
}
|
|
|
|
char* px_crypt_des(const char* key, const char* setting)
|
|
{
|
|
int i;
|
|
uint32 count, salt, l, r0, r1, keybuf[2];
|
|
char* p = NULL;
|
|
uint8* q = NULL;
|
|
static char output[21];
|
|
|
|
if (!des_initialised)
|
|
des_init();
|
|
|
|
/*
|
|
* Copy the key, shifting each character up by one bit and padding with
|
|
* zeros.
|
|
*/
|
|
q = (uint8*)keybuf;
|
|
while (q - (uint8*)keybuf - 8) {
|
|
*q++ = *key << 1;
|
|
if (*key != '\0')
|
|
key++;
|
|
}
|
|
if (des_setkey((char*)keybuf))
|
|
return (NULL);
|
|
|
|
#ifndef DISABLE_XDES
|
|
if (*setting == _PASSWORD_EFMT1) {
|
|
/*
|
|
* "new"-style: setting must be a 9-character (underscore, then 4
|
|
* bytes of count, then 4 bytes of salt) string. See CRYPT(3) under
|
|
* the "Extended crypt" heading for further details.
|
|
*
|
|
* Unlimited characters of the input key are used. This is known as
|
|
* the "Extended crypt" DES method.
|
|
*
|
|
*/
|
|
if (strlen(setting) < 9)
|
|
ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("invalid salt")));
|
|
|
|
for (i = 1, count = 0L; i < 5; i++)
|
|
count |= ascii_to_bin(setting[i]) << (i - 1) * 6;
|
|
|
|
for (i = 5, salt = 0L; i < 9; i++)
|
|
salt |= ascii_to_bin(setting[i]) << (i - 5) * 6;
|
|
|
|
while (*key) {
|
|
/*
|
|
* Encrypt the key with itself.
|
|
*/
|
|
if (des_cipher((char*)keybuf, (char*)keybuf, 0L, 1))
|
|
return (NULL);
|
|
|
|
/*
|
|
* And XOR with the next 8 characters of the key.
|
|
*/
|
|
q = (uint8*)keybuf;
|
|
while (q - (uint8*)keybuf - 8 && *key)
|
|
*q++ ^= *key++ << 1;
|
|
|
|
if (des_setkey((char*)keybuf))
|
|
return (NULL);
|
|
}
|
|
strncpy(output, setting, 9);
|
|
|
|
/*
|
|
* Double check that we weren't given a short setting. If we were, the
|
|
* above code will probably have created weird values for count and
|
|
* salt, but we don't really care. Just make sure the output string
|
|
* doesn't have an extra NUL in it.
|
|
*/
|
|
output[9] = '\0';
|
|
p = output + strlen(output);
|
|
} else
|
|
#endif /* !DISABLE_XDES */
|
|
{
|
|
/*
|
|
* "old"-style: setting - 2 bytes of salt key - only up to the first 8
|
|
* characters of the input key are used.
|
|
*/
|
|
count = 25;
|
|
|
|
if (strlen(setting) < 2)
|
|
ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("invalid salt")));
|
|
|
|
salt = (ascii_to_bin(setting[1]) << 6) | ascii_to_bin(setting[0]);
|
|
|
|
output[0] = setting[0];
|
|
|
|
/*
|
|
* If the encrypted password that the salt was extracted from is only
|
|
* 1 character long, the salt will be corrupted. We need to ensure
|
|
* that the output string doesn't have an extra NUL in it!
|
|
*/
|
|
output[1] = setting[1] ? setting[1] : output[0];
|
|
|
|
p = output + 2;
|
|
}
|
|
setup_salt(salt);
|
|
|
|
/*
|
|
* Do it.
|
|
*/
|
|
if (do_des(0L, 0L, &r0, &r1, count))
|
|
return (NULL);
|
|
|
|
/*
|
|
* Now encode the result...
|
|
*/
|
|
l = (r0 >> 8);
|
|
*p++ = _crypt_a64[(l >> 18) & 0x3f];
|
|
*p++ = _crypt_a64[(l >> 12) & 0x3f];
|
|
*p++ = _crypt_a64[(l >> 6) & 0x3f];
|
|
*p++ = _crypt_a64[l & 0x3f];
|
|
|
|
l = (r0 << 16) | ((r1 >> 16) & 0xffff);
|
|
*p++ = _crypt_a64[(l >> 18) & 0x3f];
|
|
*p++ = _crypt_a64[(l >> 12) & 0x3f];
|
|
*p++ = _crypt_a64[(l >> 6) & 0x3f];
|
|
*p++ = _crypt_a64[l & 0x3f];
|
|
|
|
l = r1 << 2;
|
|
*p++ = _crypt_a64[(l >> 12) & 0x3f];
|
|
*p++ = _crypt_a64[(l >> 6) & 0x3f];
|
|
*p++ = _crypt_a64[l & 0x3f];
|
|
*p = 0;
|
|
|
|
return (output);
|
|
}
|