openGauss-server/contrib/pgbench/pgbench.cpp

3209 lines
103 KiB
C++

/*
* pgbench.c
*
* A simple benchmark program for PostgreSQL
* Originally written by Tatsuo Ishii and enhanced by many contributors.
*
* contrib/pgbench/pgbench.c
* Copyright (c) 2000-2012, PostgreSQL Global Development Group
* ALL RIGHTS RESERVED;
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose, without fee, and without a written agreement
* is hereby granted, provided that the above copyright notice and this
* paragraph and the following two paragraphs appear in all copies.
*
* IN NO EVENT SHALL THE AUTHOR OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
* LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
* DOCUMENTATION, EVEN IF THE AUTHOR OR DISTRIBUTORS HAVE BEEN ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* THE AUTHOR AND DISTRIBUTORS SPECIFICALLY DISCLAIMS ANY WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE AUTHOR AND DISTRIBUTORS HAS NO OBLIGATIONS TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
*/
#ifdef WIN32
#define FD_SETSIZE 1024 /* set before winsock2.h is included */
#endif /* ! WIN32 */
#include "postgres_fe.h"
#include "getopt_long.h"
#include "libpq/libpq-fe.h"
#include "libpq/pqsignal.h"
#include "portability/instr_time.h"
#include "utils/elog.h"
#include <ctype.h>
#include <math.h>
#ifndef WIN32
#include <sys/time.h>
#include <unistd.h>
#endif /* ! WIN32 */
#ifdef HAVE_SYS_SELECT_H
#include <sys/select.h>
#endif
#ifdef HAVE_SYS_RESOURCE_H
#include <sys/resource.h> /* for getrlimit */
#endif
#ifdef HAVE_POLL_H
#include <poll.h>
#endif
#ifdef HAVE_SYS_POLL_H
#include <sys/poll.h>
#endif
#ifndef INT64_MAX
#define INT64_MAX INT64CONST(0x7FFFFFFFFFFFFFFF)
#endif
/*
* Multi-platform pthread implementations
*/
#ifdef WIN32
/* Use native win32 threads on Windows */
typedef struct win32_pthread* pthread_t;
typedef int pthread_attr_t;
static int pthread_create(pthread_t* thread, pthread_attr_t* attr, void* (*start_routine)(void*), void* arg);
static int pthread_join(pthread_t th, void** thread_return);
#elif defined(ENABLE_THREAD_SAFETY)
/* Use platform-dependent pthread capability */
#include <pthread.h>
#else
/* Use emulation with fork. Rename pthread identifiers to avoid conflicts */
#define PTHREAD_FORK_EMULATION
#include <sys/wait.h>
#define pthread_t pg_pthread_t
#define pthread_attr_t pg_pthread_attr_t
#define pthread_create pg_pthread_create
#define pthread_join pg_pthread_join
typedef struct fork_pthread* pthread_t;
typedef int pthread_attr_t;
static int pthread_create(pthread_t* thread, pthread_attr_t* attr, void* (*start_routine)(void*), void* arg);
static int pthread_join(pthread_t th, void** thread_return);
#endif
extern char* optarg;
extern int optind;
/********************************************************************
* some configurable parameters */
/* max number of clients allowed */
#ifdef FD_SETSIZE
#define MAXCLIENTS (FD_SETSIZE - 10)
#else
#define MAXCLIENTS 1024
#endif
#define DEFAULT_NXACTS 10 /* default nxacts */
int nxacts = 0; /* number of transactions per client */
int duration = 0; /* duration in seconds */
/*
* scaling factor. for example, scale = 10 will make 1000000 tuples in
* pgbench_accounts table.
*/
int scale = 1;
/*
* fillfactor. for example, fillfactor = 90 will use only 90 percent
* space during inserts and leave 10 percent free.
*/
int fillfactor = 100;
/*
* use unlogged tables?
*/
int unlogged_tables = 0;
/*
* When threads are throttled to a given rate limit, this is the target delay
* to reach that rate in usec. 0 is the default and means no throttling.
*/
int64 throttle_delay = 0;
/*
* tablespace selection
*/
char* tablespace = NULL;
char* index_tablespace = NULL;
/*
* end of configurable parameters
*********************************************************************/
#define nbranches \
1 /* Makes little sense to change this. Change \
* -s instead */
#define ntellers 10
#define naccounts 100000
#ifdef PGXC
bool use_branch = false; /* use branch id in DDL and DML */
#endif
bool use_log; /* log transaction latencies to a file */
int progress = 0; /* thread progress report every this seconds */
int progress_nclients = 0; /* number of clients for progress report */
int progress_nthreads = 0; /* number of threads for progress report */
bool is_connect; /* establish connection for each transaction */
bool is_mot = false; /* use memory tables */
bool is_latencies; /* report per-command latencies */
int main_pid; /* main process id used in log filename */
char* pghost = "";
char* pgport = "";
char* pgoptions = NULL;
char* pgtty = NULL;
char* login = NULL;
char* secrete = NULL;
char* dbName;
char* orient = NULL;
char* with_options = NULL;
volatile bool timer_exceeded = false; /* flag from signal handler */
volatile int seq_curr_index = -1;
/* variable definitions */
typedef struct {
char* name; /* variable name */
char* value; /* its value */
} Variable;
#define MAX_FILES 128 /* max number of SQL script files allowed */
#define SHELL_COMMAND_SIZE 256 /* maximum size allowed for shell command */
/*
* structures used in custom query mode
*/
typedef struct {
PGconn* con; /* connection handle to DB */
int id; /* client No. */
int state; /* state No. */
int cnt; /* xacts count */
int ecnt; /* error count */
int listen; /* 0 indicates that an async query has been
* sent */
int sleeping; /* 1 indicates that the client is napping */
bool throttling; /* whether nap is for throttling */
uint64 until; /* napping until (usec) */
Variable* variables; /* array of variable definitions */
int nvariables;
instr_time txn_begin; /* used for measuring transaction latencies */
instr_time stmt_begin; /* used for measuring statement latencies */
int64 txn_latencies; /* cumulated latencies */
int64 txn_sqlats; /* cumulated square latencies */
bool is_throttled; /* whether transaction throttling is done */
int use_file; /* index in sql_files for this client */
bool prepared[MAX_FILES];
} CState;
/*
* Thread state and result
*/
typedef struct {
int tid; /* thread id */
pthread_t thread; /* thread handle */
CState* state; /* array of CState */
int nstate; /* length of state[] */
instr_time start_time; /* thread start time */
instr_time* exec_elapsed; /* time spent executing cmds (per Command) */
int* exec_count; /* number of cmd executions (per Command) */
unsigned short random_state[3]; /* separate randomness for each thread */
int64 throttle_trigger; /* previous/next throttling (us) */
int64 throttle_lag; /* total transaction lag behind throttling */
int64 throttle_lag_max; /* max transaction lag */
} TState;
#define INVALID_THREAD ((pthread_t)0)
typedef struct {
instr_time conn_time;
int xacts;
int64 latencies;
int64 sqlats;
int64 throttle_lag;
int64 throttle_lag_max;
} TResult;
/*
* queries read from files
*/
#define SQL_COMMAND 1
#define META_COMMAND 2
#define MAX_ARGS 32
typedef enum QueryMode {
QUERY_SIMPLE, /* simple query */
QUERY_EXTENDED, /* extended query */
QUERY_PREPARED, /* extended query with prepared statements */
NUM_QUERYMODE
} QueryMode;
static QueryMode querymode = QUERY_SIMPLE;
static const char* QUERYMODE[] = {"simple", "extended", "prepared"};
typedef struct {
char* line; /* full text of command line */
int command_num; /* unique index of this Command struct */
int type; /* command type (SQL_COMMAND or META_COMMAND) */
int argc; /* number of command words */
char* argv[MAX_ARGS]; /* command word list */
} Command;
static Command** sql_files[MAX_FILES]; /* SQL script files */
static int num_files; /* number of script files */
static int num_commands = 0; /* total number of Command structs */
static int debug = 0; /* debug flag */
/* default scenario */
static char* tpc_b = {"\\set nbranches " CppAsString2(
nbranches) " * :scale\n"
"\\set ntellers " CppAsString2(
ntellers) " * :scale\n"
"\\set naccounts " CppAsString2(
naccounts) " * :scale\n"
"\\setrandom aid 1 :naccounts\n"
"\\setrandom bid 1 :nbranches\n"
"\\setrandom ttid 1 :ntellers\n"
"\\setrandom delta -5000 5000\n"
"START TRANSACTION;\n"
"UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = "
":aid;\n"
"SELECT abalance FROM pgbench_accounts WHERE aid = :aid;\n"
"UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE ttid = "
":ttid;\n"
"UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = "
":bid;\n"
"INSERT INTO pgbench_history (ttid, bid, aid, delta, mtime) VALUES (:ttid, "
":bid, :aid, :delta, CURRENT_TIMESTAMP);\n"
"END;\n"};
#ifdef PGXC
static char* tpc_b_bid = {"\\set nbranches " CppAsString2(
nbranches) " * :scale\n"
"\\set ntellers " CppAsString2(
ntellers) " * :scale\n"
"\\set naccounts " CppAsString2(
naccounts) " * :scale\n"
"\\setrandom aid 1 :naccounts\n"
"\\setrandom bid 1 :nbranches\n"
"\\setrandom ttid 1 :ntellers\n"
"\\setrandom delta -5000 5000\n"
"START TRANSACTION;\n"
"UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid "
"AND bid = :bid;\n"
"SELECT abalance FROM pgbench_accounts WHERE aid = :aid AND bid = :bid\n"
"UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE ttid = "
":ttid AND bid = :bid;\n"
"UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = "
":bid;\n"
"INSERT INTO pgbench_history (ttid, bid, aid, delta, mtime) VALUES (:ttid, "
":bid, :aid, :delta, CURRENT_TIMESTAMP);\n"
"END;\n"};
#endif
/* -N case */
static char* simple_update = {"\\set nbranches " CppAsString2(
nbranches) " * :scale\n"
"\\set ntellers " CppAsString2(
ntellers) " * :scale\n"
"\\set naccounts " CppAsString2(
naccounts) " * :scale\n"
"\\setrandom aid 1 :naccounts\n"
"\\setrandom bid 1 :nbranches\n"
"\\setrandom ttid 1 :ntellers\n"
"\\setrandom delta -5000 5000\n"
"START TRANSACTION;\n"
"UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = "
":aid;\n"
"SELECT abalance FROM pgbench_accounts WHERE aid = :aid;\n"
"INSERT INTO pgbench_history (ttid, bid, aid, delta, mtime) VALUES (:ttid, "
":bid, :aid, :delta, CURRENT_TIMESTAMP);\n"
"END;\n"};
#ifdef PGXC
static char* simple_update_bid = {"\\set nbranches " CppAsString2(
nbranches) " * :scale\n"
"\\set ntellers " CppAsString2(
ntellers) " * :scale\n"
"\\set naccounts " CppAsString2(
naccounts) " * :scale\n"
"\\setrandom aid 1 :naccounts\n"
"\\setrandom bid 1 :nbranches\n"
"\\setrandom ttid 1 :ntellers\n"
"\\setrandom delta -5000 5000\n"
"START TRANSACTION;\n"
"UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid "
"AND bid = :bid;\n"
"SELECT abalance FROM pgbench_accounts WHERE aid = :aid AND bid = :bid;\n"
"INSERT INTO pgbench_history (ttid, bid, aid, delta, mtime) VALUES (:ttid, "
":bid, :aid, :delta, CURRENT_TIMESTAMP);\n"
"END;\n"};
#endif
/* -S case */
static char* select_only = {
"\\set naccounts " CppAsString2(naccounts) " * :scale\n"
"\\setrandom aid 1 :naccounts\n"
"SELECT abalance FROM pgbench_accounts WHERE aid = :aid;\n"};
/* Function prototypes */
static void setalarm(int seconds);
static void* threadRun(void* arg);
/*
* routines to check mem allocations and fail noisily.
*/
static void* xmalloc(size_t size)
{
void* result = NULL;
/* Avoid unportable behavior of malloc(0) */
if (size == 0) {
size = 1;
}
result = malloc(size);
if (!result) {
fprintf(stderr, "out of memory\n");
exit(1);
}
return result;
}
static void* xrealloc(void* ptr, size_t size)
{
void* result = NULL;
/* Avoid unportable behavior of realloc(NULL, 0) */
if (ptr == NULL && size == 0) {
size = 1;
}
result = realloc(ptr, size);
if (!result) {
fprintf(stderr, "out of memory\n");
exit(1);
}
return result;
}
static char* xstrdup(const char* s)
{
char* result = NULL;
result = strdup(s);
if (!result) {
fprintf(stderr, "out of memory\n");
exit(1);
}
return result;
}
static void usage(const char* progname)
{
printf("%s is a benchmarking tool for PostgreSQL.\n\n"
"Usage:\n"
" %s [OPTION]... [DBNAME]\n"
"\nInitialization options:\n"
" -i invokes initialization mode\n"
" -m use memory tables (mot)\n"
" -F NUM fill factor\n"
#ifdef PGXC
" -k distribute by primary key branch id - bid\n"
#endif
" -s NUM scaling factor\n"
" --index-tablespace=TABLESPACE\n"
" create indexes in the specified tablespace\n"
" --tablespace=TABLESPACE\n"
" create tables in the specified tablespace\n"
" --unlogged-tables\n"
" create tables as unlogged tables\n"
"\nBenchmarking options:\n"
" -c NUM number of concurrent database clients (default: 1)\n"
" -C establish new connection for each transaction\n"
" -D VARNAME=VALUE\n"
" define variable for use by custom script\n"
" -f FILENAME read transaction script from FILENAME\n"
#ifdef PGXC
" -k query with default key and additional key branch id (bid)\n"
#endif
" -j NUM number of threads (default: 1)\n"
" -l write transaction times to log file\n"
" -M simple|extended|prepared\n"
" protocol for submitting queries to server (default: simple)\n"
" -n do not run VACUUM before tests\n"
" -N do not update tables \"pgbench_tellers\" and \"pgbench_branches\"\n"
" -O row|column|orc\n"
" Table orientation option\n"
" -P NUM show thread progress report every NUM seconds\n"
" -r report average latency per command\n"
" -R, --rate=NUM\n"
" target rate in transactions per second\n"
" -s NUM report this scale factor in output\n"
" -S perform SELECT-only transactions\n"
" -t NUM number of transactions each client runs (default: 10)\n"
" -T NUM duration of benchmark test in seconds\n"
" -v vacuum all four standard tables before tests\n"
"\nCommon options:\n"
" -d print debugging output\n"
" -h HOSTNAME database server host or socket directory\n"
" -p PORT database server port number\n"
" -U USERNAME connect as specified database user\n"
" -W PASSWORD connect as specified database user through explicit password\n"
" -V, --version output version information, then exit\n"
" -?, --help show this help, then exit\n"
"\n"
"Report bugs to <pgsql-bugs@postgresql.org>.\n",
progname,
progname);
}
/* random number generator: uniform distribution from min to max inclusive */
static int getrand(TState* thread, int min, int max)
{
/*
* Odd coding is so that min and max have approximately the same chance of
* being selected as do numbers between them.
*
* pg_erand48() is thread-safe and concurrent, which is why we use it
* rather than random(), which in glibc is non-reentrant, and therefore
* protected by a mutex, and therefore a bottleneck on machines with many
* CPUs.
*/
return min + (int)((max - min + 1) * pg_erand48(thread->random_state));
}
/* call PQexec() and exit() on failure */
static void executeStatement(PGconn* con, const char* sql, bool err_tolerant = false)
{
PGresult* res = NULL;
res = PQexec(con, sql);
if (PQresultStatus(res) != PGRES_COMMAND_OK) {
fprintf(stderr, "%s", PQerrorMessage(con));
if (!err_tolerant)
exit(1);
}
PQclear(res);
}
/* set up a connection to the backend */
static PGconn* doConnect(void)
{
PGconn* conn = NULL;
static char* password = NULL;
bool new_pass = false;
if (secrete != NULL) {
password = secrete;
}
/*
* Start the connection. Loop until we have a password if requested by
* backend.
*/
do {
new_pass = false;
conn = PQsetdbLogin(pghost, pgport, pgoptions, pgtty, dbName, login, password);
if (!conn) {
fprintf(stderr, "Connection to database \"%s\" failed\n", dbName);
return NULL;
}
if (PQstatus(conn) == CONNECTION_BAD && PQconnectionNeedsPassword(conn) && password == NULL) {
PQfinish(conn);
password = simple_prompt("Password: ", 100, false);
new_pass = true;
}
} while (new_pass);
/* check to see that the backend connection was successfully made */
if (PQstatus(conn) == CONNECTION_BAD) {
fprintf(stderr, "Connection to database \"%s\" failed:\n%s", dbName, PQerrorMessage(conn));
PQfinish(conn);
return NULL;
}
return conn;
}
/* throw away response from backend */
static void discard_response(CState* state)
{
PGresult* res = NULL;
do {
res = PQgetResult(state->con);
if (res)
PQclear(res);
} while (res);
}
static int compareVariables(const void* v1, const void* v2)
{
return strcmp(((const Variable*)v1)->name, ((const Variable*)v2)->name);
}
static char* getVariable(CState* st, char* name)
{
Variable key;
Variable* var = NULL;
/* On some versions of Solaris, bsearch of zero items dumps core */
if (st->nvariables <= 0) {
return NULL;
}
key.name = name;
var = (Variable*)bsearch((void*)&key, (void*)st->variables, st->nvariables, sizeof(Variable), compareVariables);
if (var != NULL) {
return var->value;
} else {
return NULL;
}
}
/* check whether the name consists of alphabets, numerals and underscores. */
static bool isLegalVariableName(const char* name)
{
int i;
for (i = 0; name[i] != '\0'; i++) {
if (!isalnum((unsigned char)name[i]) && name[i] != '_') {
return false;
}
}
return true;
}
static int putVariable(CState* st, const char* context, char* name, char* value)
{
Variable key;
Variable* var = NULL;
key.name = name;
/* On some versions of Solaris, bsearch of zero items dumps core */
if (st->nvariables > 0) {
var = (Variable*)bsearch((void*)&key, (void*)st->variables, st->nvariables, sizeof(Variable), compareVariables);
} else {
var = NULL;
}
if (var == NULL) {
Variable* newvars = NULL;
/*
* Check for the name only when declaring a new variable to avoid
* overhead.
*/
if (!isLegalVariableName(name)) {
fprintf(stderr, "%s: invalid variable name '%s'\n", context, name);
return false;
}
if (st->variables) {
newvars = (Variable*)xrealloc(st->variables, (st->nvariables + 1) * sizeof(Variable));
} else {
newvars = (Variable*)xmalloc(sizeof(Variable));
}
st->variables = newvars;
var = &newvars[st->nvariables];
var->name = xstrdup(name);
var->value = xstrdup(value);
st->nvariables++;
qsort((void*)st->variables, st->nvariables, sizeof(Variable), compareVariables);
} else {
char* val = NULL;
/* dup then free, in case value is pointing at this variable */
val = xstrdup(value);
free(var->value);
var->value = val;
}
return true;
}
static char* parseVariable(const char* sql, int* eaten)
{
int i = 0;
char* name = NULL;
do {
i++;
} while (isalnum((unsigned char)sql[i]) || sql[i] == '_');
if (i == 1) {
return NULL;
}
name = (char*)xmalloc(i);
errno_t rc = memcpy_s(name, i, &sql[1], i - 1);
securec_check_c(rc, "", "");
name[i - 1] = '\0';
*eaten = i;
return name;
}
static char* replaceVariable(char** sql, char* param, int len, char* value)
{
int valueln = strlen(value);
errno_t rc;
if (valueln > len) {
size_t offset = param - *sql;
*sql = (char*)xrealloc(*sql, strlen(*sql) - len + valueln + 1);
param = *sql + offset;
}
if (valueln != len)
memmove(param + valueln, param + len, strlen(param + len) + 1);
rc = memcpy_s(param, valueln, value, valueln);
securec_check_c(rc, "", "");
return param + valueln;
}
static char* assignVariables(CState* st, char* sql)
{
char *p = NULL;
char *name = NULL;
char *val = NULL;
p = sql;
while ((p = strchr(p, ':')) != NULL) {
int eaten;
name = parseVariable(p, &eaten);
if (name == NULL) {
while (*p == ':') {
p++;
}
continue;
}
val = getVariable(st, name);
free(name);
if (val == NULL) {
p++;
continue;
}
p = replaceVariable(&sql, p, eaten, val);
}
return sql;
}
static void getQueryParams(CState* st, const Command* command, const char** params)
{
int i;
for (i = 0; i < command->argc - 1; i++)
params[i] = getVariable(st, command->argv[i + 1]);
}
/*
* Run a shell command. The result is assigned to the variable if not NULL.
* Return true if succeeded, or false on error.
*/
static bool runShellCommand(CState* st, char* variable, char** argv, int argc)
{
char command[SHELL_COMMAND_SIZE];
int i, len = 0;
FILE* fp = NULL;
char res[64];
char* endptr = NULL;
int retval;
/*----------
* Join arguments with whitespace separators. Arguments starting with
* exactly one colon are treated as variables:
* name - append a string "name"
* :var - append a variable named 'var'
* ::name - append a string ":name"
*----------
*/
for (i = 0; i < argc; i++) {
char* arg = NULL;
int arglen;
if (argv[i][0] != ':') {
arg = argv[i]; /* a string literal */
} else if (argv[i][1] == ':') {
arg = argv[i] + 1; /* a string literal starting with colons */
} else if ((arg = getVariable(st, argv[i] + 1)) == NULL) {
fprintf(stderr, "%s: undefined variable %s\n", argv[0], argv[i]);
return false;
}
arglen = strlen(arg);
if ((len + arglen + ((i > 0) ? 1 : 0)) >= (SHELL_COMMAND_SIZE - 1)) {
fprintf(stderr, "%s: too long shell command\n", argv[0]);
return false;
}
if (i > 0)
command[len++] = ' ';
errno_t rc = memcpy_s(command + len, SHELL_COMMAND_SIZE - len, arg, arglen);
securec_check_c(rc, "", "");
len += arglen;
}
command[len] = '\0';
/* Fast path for non-assignment case */
if (variable == NULL) {
if (system(command)) {
if (!timer_exceeded)
fprintf(stderr, "%s: cannot launch shell command\n", argv[0]);
return false;
}
return true;
}
/* Execute the command with pipe and read the standard output. */
if ((fp = popen(command, "r")) == NULL) {
fprintf(stderr, "%s: cannot launch shell command\n", argv[0]);
return false;
}
if (fgets(res, sizeof(res), fp) == NULL) {
if (!timer_exceeded)
fprintf(stderr, "%s: cannot read the result\n", argv[0]);
return false;
}
if (pclose(fp) < 0) {
fprintf(stderr, "%s: cannot close shell command\n", argv[0]);
return false;
}
/* Check whether the result is an integer and assign it to the variable */
retval = (int)strtol(res, &endptr, 10);
while (*endptr != '\0' && isspace((unsigned char)*endptr)) {
endptr++;
}
if (*res == '\0' || *endptr != '\0') {
fprintf(stderr, "%s: must return an integer ('%s' returned)\n", argv[0], res);
return false;
}
snprintf(res, sizeof(res), "%d", retval);
if (!putVariable(st, "setshell", variable, res))
return false;
#ifdef DEBUG
printf("shell parameter name: %s, value: %s\n", argv[1], res);
#endif
return true;
}
#define MAX_PREPARE_NAME 32
static void preparedStatementName(char* buffer, int file, int state)
{
sprintf(buffer, "P%d_%d", file, state);
}
static bool clientDone(CState* st, bool ok)
{
(void)ok; /* unused */
if (st->con != NULL) {
PQfinish(st->con);
st->con = NULL;
}
return false; /* always false */
}
/* return false if client should be disconnected */
static bool doCustom(TState* thread, CState* st, instr_time* conn_time, FILE* logfile)
{
PGresult* res = NULL;
Command** commands;
bool trans_needs_throttle = false;
top:
commands = sql_files[st->use_file];
/*
* Handle throttling once per transaction by sleeping. It is simpler
* to do this here rather than at the end, because so much complicated
* logic happens below when statements finish.
*/
if (throttle_delay && !st->is_throttled) {
/*
* Use inverse transform sampling to randomly generate a delay, such
* that the series of delays will approximate a Poisson distribution
* centered on the throttle_delay time.
*
* 10000 implies a 9.2 (-log(1/10000)) to 0.0 (log 1) delay multiplier,
* and results in a 0.055 % target underestimation bias:
*
* SELECT 1.0/AVG(-LN(i/10000.0)) FROM generate_series(1,10000) AS i;
* = 1.000552717032611116335474
*
* If transactions are too slow or a given wait is shorter than
* a transaction, the next transaction will start right away.
*/
int64 wait = (int64)(throttle_delay * 1.00055271703 * -log(getrand(thread, 1, 10000) / 10000.0));
thread->throttle_trigger += wait;
st->until = thread->throttle_trigger;
st->sleeping = 1;
st->throttling = true;
st->is_throttled = true;
if (debug)
fprintf(stderr, "client %d throttling " INT64_FORMAT " us\n", st->id, wait);
}
if (st->sleeping) { /* are we sleeping? */
instr_time now;
int64 now_us;
INSTR_TIME_SET_CURRENT(now);
now_us = INSTR_TIME_GET_MICROSEC(now);
if (st->until <= (uint64)now_us) {
st->sleeping = 0; /* Done sleeping, go ahead with next command */
if (st->throttling) {
/* Measure lag of throttled transaction relative to target */
int64 lag = now_us - st->until;
thread->throttle_lag += lag;
if (lag > thread->throttle_lag_max)
thread->throttle_lag_max = lag;
st->throttling = false;
}
} else
return true; /* Still sleeping, nothing to do here */
}
if (st->listen) { /* are we receiver? */
if (commands[st->state]->type == SQL_COMMAND) {
if (debug)
fprintf(stderr, "client %d receiving\n", st->id);
if (!PQconsumeInput(st->con)) { /* there's something wrong */
fprintf(stderr,
"Client %d aborted in state %d. Probably the backend died while processing.\n",
st->id,
st->state);
return clientDone(st, false);
}
if (PQisBusy(st->con))
return true; /* don't have the whole result yet */
}
/*
* command finished: accumulate per-command execution times in
* thread-local data structure, if per-command latencies are requested
*/
if (is_latencies) {
instr_time now;
int cnum = commands[st->state]->command_num;
INSTR_TIME_SET_CURRENT(now);
INSTR_TIME_ACCUM_DIFF(thread->exec_elapsed[cnum], now, st->stmt_begin);
thread->exec_count[cnum]++;
}
/* transaction finished: record latency under progress or throttling */
if ((progress || throttle_delay) && commands[st->state + 1] == NULL) {
instr_time diff;
int64 latency;
INSTR_TIME_SET_CURRENT(diff);
INSTR_TIME_SUBTRACT(diff, st->txn_begin);
latency = INSTR_TIME_GET_MICROSEC(diff);
st->txn_latencies += latency;
/*
* XXX In a long benchmark run of high-latency transactions, this
* int64 addition eventually overflows. For example, 100 threads
* running 10s transactions will overflow it in 2.56 hours. With
* a more-typical OLTP workload of .1s transactions, overflow
* would take 256 hours.
*/
st->txn_sqlats += latency * latency;
}
/*
* if transaction finished, record the time it took in the log
*/
if (logfile && commands[st->state + 1] == NULL) {
instr_time now;
instr_time diff;
double usec;
INSTR_TIME_SET_CURRENT(now);
diff = now;
INSTR_TIME_SUBTRACT(diff, st->txn_begin);
usec = (double)INSTR_TIME_GET_MICROSEC(diff);
#ifndef WIN32
/* This is more than we really ought to know about instr_time */
fprintf(logfile,
"%d %d %.0f %d %ld %ld\n",
st->id,
st->cnt,
usec,
st->use_file,
(long)now.tv_sec,
(long)now.tv_usec);
#else
/* On Windows, instr_time doesn't provide a timestamp anyway */
fprintf(logfile, "%d %d %.0f %d 0 0\n", st->id, st->cnt, usec, st->use_file);
#endif
}
/* identify transaction errors */
bool error_found = false;
if (commands[st->state]->type == SQL_COMMAND) {
/*
* Read and discard the query result; note this is not included in
* the statement latency numbers.
*/
res = PQgetResult(st->con);
switch (PQresultStatus(res)) {
case PGRES_COMMAND_OK:
case PGRES_TUPLES_OK:
break; /* OK */
default:
if (!is_mot) {
fprintf(
stderr, "Client %d aborted in state %d: %s", st->id, st->state, PQerrorMessage(st->con));
} else {
error_found = true;
}
break;
}
PQclear(res);
discard_response(st);
}
if (commands[st->state + 1] == NULL) {
if (is_connect) {
PQfinish(st->con);
st->con = NULL;
}
if (!error_found) {
++st->cnt;
}
if ((st->cnt >= nxacts && duration <= 0) || timer_exceeded)
return clientDone(st, true); /* exit success */
}
/* increment state counter */
st->state++;
if (commands[st->state] == NULL) {
st->state = 0;
st->use_file = getrand(thread, 0, num_files - 1);
commands = sql_files[st->use_file];
st->is_throttled = false;
/*
* No transaction is underway anymore, which means there is nothing
* to listen to right now. When throttling rate limits are active,
* a sleep will happen next, as the next transaction starts. And
* then in any case the next SQL command will set listen back to 1.
*/
st->listen = 0;
trans_needs_throttle = (throttle_delay > 0);
}
}
if (st->con == NULL) {
instr_time start, end;
INSTR_TIME_SET_CURRENT(start);
if ((st->con = doConnect()) == NULL) {
fprintf(stderr, "Client %d aborted in establishing connection.\n", st->id);
return clientDone(st, false);
}
INSTR_TIME_SET_CURRENT(end);
INSTR_TIME_ACCUM_DIFF(*conn_time, end, start);
}
/*
* This ensures that a throttling delay is inserted before proceeding
* with sql commands, after the first transaction. The first transaction
* throttling is performed when first entering doCustom.
*/
if (trans_needs_throttle) {
trans_needs_throttle = false;
goto top;
}
/* Record transaction start time under logging, progress or throttling */
if ((logfile || progress || throttle_delay) && st->state == 0)
INSTR_TIME_SET_CURRENT(st->txn_begin);
/* Record statement start time if per-command latencies are requested */
if (is_latencies)
INSTR_TIME_SET_CURRENT(st->stmt_begin);
if (commands[st->state]->type == SQL_COMMAND) {
const Command* command = commands[st->state];
int r;
if (querymode == QUERY_SIMPLE) {
char* sql = NULL;
sql = xstrdup(command->argv[0]);
sql = assignVariables(st, sql);
if (debug)
fprintf(stderr, "client %d sending %s\n", st->id, sql);
r = PQsendQuery(st->con, sql);
free(sql);
} else if (querymode == QUERY_EXTENDED) {
const char* sql = command->argv[0];
const char* params[MAX_ARGS];
getQueryParams(st, command, params);
if (debug)
fprintf(stderr, "client %d sending %s\n", st->id, sql);
r = PQsendQueryParams(st->con, sql, command->argc - 1, NULL, params, NULL, NULL, 0);
} else if (querymode == QUERY_PREPARED) {
char name[MAX_PREPARE_NAME];
const char* params[MAX_ARGS];
if (!st->prepared[st->use_file]) {
int j;
for (j = 0; commands[j] != NULL; j++) {
PGresult* res = NULL;
char name[MAX_PREPARE_NAME];
if (commands[j]->type != SQL_COMMAND) {
continue;
}
preparedStatementName(name, st->use_file, j);
res = PQprepare(st->con, name, commands[j]->argv[0], commands[j]->argc - 1, NULL);
if (PQresultStatus(res) != PGRES_COMMAND_OK)
fprintf(stderr, "%s", PQerrorMessage(st->con));
PQclear(res);
}
st->prepared[st->use_file] = true;
}
getQueryParams(st, command, params);
preparedStatementName(name, st->use_file, st->state);
if (debug)
fprintf(stderr, "client %d sending %s\n", st->id, name);
r = PQsendQueryPrepared(st->con, name, command->argc - 1, params, NULL, NULL, 0);
} else /* unknown sql mode */
r = 0;
if (r == 0) {
if (debug)
fprintf(stderr, "client %d cannot send %s\n", st->id, command->argv[0]);
st->ecnt++;
} else
st->listen = 1; /* flags that should be listened */
} else if (commands[st->state]->type == META_COMMAND) {
int argc = commands[st->state]->argc, i;
char** argv = commands[st->state]->argv;
if (debug) {
fprintf(stderr, "client %d executing \\%s", st->id, argv[0]);
for (i = 1; i < argc; i++)
fprintf(stderr, " %s", argv[i]);
fprintf(stderr, "\n");
}
if (pg_strcasecmp(argv[0], "setrandom") == 0) {
char* var = NULL;
int min, max;
char res[64];
if (*argv[2] == ':') {
if ((var = getVariable(st, argv[2] + 1)) == NULL) {
fprintf(stderr, "%s: undefined variable %s\n", argv[0], argv[2]);
st->ecnt++;
return true;
}
min = atoi(var);
} else
min = atoi(argv[2]);
#ifdef NOT_USED
if (min < 0) {
fprintf(stderr, "%s: invalid minimum number %d\n", argv[0], min);
st->ecnt++;
return;
}
#endif
if (*argv[3] == ':') {
if ((var = getVariable(st, argv[3] + 1)) == NULL) {
fprintf(stderr, "%s: undefined variable %s\n", argv[0], argv[3]);
st->ecnt++;
return true;
}
max = atoi(var);
} else
max = atoi(argv[3]);
if (max < min) {
fprintf(stderr, "%s: maximum is less than minimum\n", argv[0]);
st->ecnt++;
return true;
}
/*
* getrand() neeeds to be able to subtract max from min and add
* one the result without overflowing. Since we know max > min,
* we can detect overflow just by checking for a negative result.
* But we must check both that the subtraction doesn't overflow,
* and that adding one to the result doesn't overflow either.
*/
if (max - min < 0 || (max - min) + 1 < 0) {
fprintf(stderr, "%s: range too large\n", argv[0]);
st->ecnt++;
return true;
}
#ifdef DEBUG
printf("min: %d max: %d random: %d\n", min, max, getrand(thread, min, max));
#endif
snprintf(res, sizeof(res), "%d", getrand(thread, min, max));
if (!putVariable(st, argv[0], argv[1], res)) {
st->ecnt++;
return true;
}
st->listen = 1;
} else if (pg_strcasecmp(argv[0], "setseq") == 0) {
char* var = NULL;
int min, max;
char res[64];
if (*argv[2] == ':') {
if ((var = getVariable(st, argv[2] + 1)) == NULL) {
fprintf(stderr, "%s: undefined variable %s\n", argv[0], argv[2]);
st->ecnt++;
return true;
}
min = atoi(var);
} else
min = atoi(argv[2]);
#ifdef NOT_USED
if (min < 0) {
fprintf(stderr, "%s: invalid minimum number %d\n", argv[0], min);
st->ecnt++;
return;
}
#endif
if (*argv[3] == ':') {
if ((var = getVariable(st, argv[3] + 1)) == NULL) {
fprintf(stderr, "%s: undefined variable %s\n", argv[0], argv[3]);
st->ecnt++;
return true;
}
max = atoi(var);
} else
max = atoi(argv[3]);
if (max < min) {
fprintf(stderr, "%s: maximum is less than minimum\n", argv[0]);
st->ecnt++;
return true;
}
/*
* getrand() neeeds to be able to subtract max from min and add
* one the result without overflowing. Since we know max > min,
* we can detect overflow just by checking for a negative result.
* But we must check both that the subtraction doesn't overflow,
* and that adding one to the result doesn't overflow either.
*/
if (max - min < 0 || (max - min) + 1 < 0) {
fprintf(stderr, "%s: range too large\n", argv[0]);
st->ecnt++;
return true;
}
seq_curr_index++;
if (seq_curr_index > max)
seq_curr_index = min;
if (seq_curr_index < min)
seq_curr_index = min;
snprintf(res, sizeof(res), "%d", seq_curr_index);
if (!putVariable(st, argv[0], argv[1], res)) {
st->ecnt++;
return true;
}
st->listen = 1;
} else if (pg_strcasecmp(argv[0], "set") == 0) {
char* var = NULL;
int ope1, ope2;
char res[64];
if (*argv[2] == ':') {
if ((var = getVariable(st, argv[2] + 1)) == NULL) {
fprintf(stderr, "%s: undefined variable %s\n", argv[0], argv[2]);
st->ecnt++;
return true;
}
ope1 = atoi(var);
} else
ope1 = atoi(argv[2]);
if (argc < 5)
snprintf(res, sizeof(res), "%d", ope1);
else {
if (*argv[4] == ':') {
if ((var = getVariable(st, argv[4] + 1)) == NULL) {
fprintf(stderr, "%s: undefined variable %s\n", argv[0], argv[4]);
st->ecnt++;
return true;
}
ope2 = atoi(var);
} else
ope2 = atoi(argv[4]);
if (strcmp(argv[3], "+") == 0)
snprintf(res, sizeof(res), "%d", ope1 + ope2);
else if (strcmp(argv[3], "-") == 0)
snprintf(res, sizeof(res), "%d", ope1 - ope2);
else if (strcmp(argv[3], "*") == 0)
snprintf(res, sizeof(res), "%d", ope1 * ope2);
else if (strcmp(argv[3], "/") == 0) {
if (ope2 == 0) {
fprintf(stderr, "%s: division by zero\n", argv[0]);
st->ecnt++;
return true;
}
snprintf(res, sizeof(res), "%d", ope1 / ope2);
} else {
fprintf(stderr, "%s: unsupported operator %s\n", argv[0], argv[3]);
st->ecnt++;
return true;
}
}
if (!putVariable(st, argv[0], argv[1], res)) {
st->ecnt++;
return true;
}
st->listen = 1;
} else if (pg_strcasecmp(argv[0], "sleep") == 0) {
char* var = NULL;
int usec;
instr_time now;
if (*argv[1] == ':') {
if ((var = getVariable(st, argv[1] + 1)) == NULL) {
fprintf(stderr, "%s: undefined variable %s\n", argv[0], argv[1]);
st->ecnt++;
return true;
}
usec = atoi(var);
} else
usec = atoi(argv[1]);
if (argc > 2) {
if (pg_strcasecmp(argv[2], "ms") == 0)
usec *= 1000;
else if (pg_strcasecmp(argv[2], "s") == 0)
usec *= 1000000;
} else
usec *= 1000000;
INSTR_TIME_SET_CURRENT(now);
st->until = INSTR_TIME_GET_MICROSEC(now) + usec;
st->sleeping = 1;
st->listen = 1;
} else if (pg_strcasecmp(argv[0], "setshell") == 0) {
bool ret = runShellCommand(st, argv[1], argv + 2, argc - 2);
if (timer_exceeded) /* timeout */
return clientDone(st, true);
else if (!ret) /* on error */
{
st->ecnt++;
return true;
} else /* succeeded */
st->listen = 1;
} else if (pg_strcasecmp(argv[0], "shell") == 0) {
bool ret = runShellCommand(st, NULL, argv + 1, argc - 1);
if (timer_exceeded) /* timeout */
return clientDone(st, true);
else if (!ret) /* on error */
{
st->ecnt++;
return true;
} else /* succeeded */
st->listen = 1;
}
goto top;
}
return true;
}
/* discard connections */
static void disconnect_all(CState* state, int length)
{
int i;
for (i = 0; i < length; i++) {
if (state[i].con) {
PQfinish(state[i].con);
state[i].con = NULL;
}
}
}
/* create tables and setup data */
static void init(void)
{
/*
* Note: TPC-B requires at least 100 bytes per row, and the "filler"
* fields in these table declarations were intended to comply with that.
* But because they default to NULLs, they don't actually take any space.
* We could fix that by giving them non-null default values. However, that
* would completely break comparability of pgbench results with prior
* versions. Since pgbench has never pretended to be fully TPC-B
* compliant anyway, we stick with the historical behavior.
*/
struct ddlinfo {
char* table;
char* cols;
int declare_fillfactor;
#ifdef PGXC
char* distribute_by;
#endif
};
struct ddlinfo DDLs[] = {{"pgbench_branches",
"bid int not null,bbalance int,filler char(88)",
1
#ifdef PGXC
,
"distribute by hash (bid)"
#endif
},
{"pgbench_tellers",
"ttid int not null,bid int,tbalance int,filler char(84)",
1
#ifdef PGXC
,
"distribute by hash (bid)"
#endif
},
{"pgbench_accounts",
"aid int not null,bid int,abalance int,filler char(84)",
1
#ifdef PGXC
,
"distribute by hash (bid)"
#endif
},
{"pgbench_history",
"ttid int,bid int,aid int,delta int,mtime timestamp,filler char(22)",
0
#ifdef PGXC
,
"distribute by hash (bid)"
#endif
}};
static char* DDLAFTERs[] = {"alter table pgbench_branches add primary key (bid)",
"alter table pgbench_tellers add primary key (ttid)",
"alter table pgbench_accounts add primary key (aid)"};
static char* DDLAFTERs_mot[] = {"alter foreign table pgbench_branches add primary key (bid)",
"alter foreign table pgbench_tellers add primary key (ttid)",
"alter foreign table pgbench_accounts add primary key (aid)"};
#ifdef PGXC
static char* DDLAFTERs_bid[] = {"alter table pgbench_branches add primary key (bid)",
"alter table pgbench_tellers add primary key (ttid,bid)",
"alter table pgbench_accounts add primary key (aid,bid)"};
#endif
PGconn* con = NULL;
PGresult* res = NULL;
char sql[256];
int i;
long ttl;
if ((con = doConnect()) == NULL)
exit(1);
for (i = 0; i < (int)lengthof(DDLs); i++) {
int hasWithOpts = 0;
char opts[256];
char check_buffer[512];
char buffer[512];
struct ddlinfo* ddl = &DDLs[i];
/* Remove old table, if it exists. */
snprintf(check_buffer,
512,
"select table_type from information_schema.tables where table_name = '%s' and table_type = 'FOREIGN TABLE'",
ddl->table);
PGresult *res = PQexec(con, check_buffer);
if (PQntuples(res) == 0) {
snprintf(buffer, 512, "drop table if exists %s", ddl->table);
} else {
snprintf(buffer, 512, "drop foreign table if exists %s", ddl->table);
}
PQclear(res);
executeStatement(con, buffer);
/* Construct new create table statement. */
opts[0] = '\0';
hasWithOpts = 0;
if (with_options || ddl->declare_fillfactor) {
/* header */
snprintf(opts + strlen(opts), 256 - strlen(opts), " with (");
/* only row orientation support fillfactor */
if ((!orient || strcmp(orient, "row") == 0) && ddl->declare_fillfactor) {
snprintf(opts + strlen(opts), 256 - strlen(opts), " fillfactor=%d", fillfactor);
++hasWithOpts;
}
if (with_options) {
if (hasWithOpts) {
snprintf(opts + strlen(opts), 256 - strlen(opts), ",");
}
snprintf(opts + strlen(opts), 256 - strlen(opts), " %s ", with_options);
++hasWithOpts;
}
/* tail */
snprintf(opts + strlen(opts), 256 - strlen(opts), " )");
}
if (tablespace != NULL) {
char* escape_tablespace = NULL;
escape_tablespace = PQescapeIdentifier(con, tablespace, strlen(tablespace));
snprintf(opts + strlen(opts), 256 - strlen(opts), " tablespace %s", escape_tablespace);
PQfreemem(escape_tablespace);
}
#ifdef PGXC
/* Add distribution columns if necessary */
if (use_branch)
snprintf(buffer,
512,
"create%s table %s(%s)%s %s",
unlogged_tables ? " unlogged" : "",
ddl->table,
ddl->cols,
opts,
ddl->distribute_by);
else
#endif
if (!is_mot) {
snprintf(buffer,
512,
"create%s table %s(%s)%s",
unlogged_tables ? " unlogged" : "",
ddl->table,
ddl->cols,
opts);
} else {
snprintf(buffer,
512,
"create foreign table %s(%s)",
ddl->table,
ddl->cols);
}
executeStatement(con, buffer);
}
#define MINI_BATCH 5000
/* if mot create primary keys before data load */
if (is_mot) {
fprintf(stderr, "set primary key on memory tables...\n");
for (i = 0; i < (int)lengthof(DDLAFTERs_mot); i++) {
char buffer[256];
strncpy(buffer, DDLAFTERs_mot[i], 256);
executeStatement(con, buffer, true);
}
}
for (i = 0; i < nbranches * scale;) {
executeStatement(con, "start transaction");
int k = 0;
while (k < MINI_BATCH && i < nbranches * scale) {
snprintf(sql, 256, "insert into pgbench_branches(bid,bbalance) values(%d,0)", i + 1);
executeStatement(con, sql);
i++;
k++;
}
executeStatement(con, "commit");
}
for (i = 0; i < ntellers * scale;) {
executeStatement(con, "start transaction");
int k = 0;
while (k < MINI_BATCH && i < ntellers * scale) {
snprintf(
sql, 256, "insert into pgbench_tellers(ttid,bid,tbalance) values (%d,%d,0)", i + 1, i / ntellers + 1);
executeStatement(con, sql);
i++;
k++;
}
executeStatement(con, "commit");
}
/*
* fill the pgbench_accounts table with some data
*/
fprintf(stderr, "creating tables...\n");
executeStatement(con, "start transaction");
executeStatement(con, "truncate pgbench_accounts");
res = PQexec(con, "copy pgbench_accounts from stdin");
if (PQresultStatus(res) != PGRES_COPY_IN) {
fprintf(stderr, "%s", PQerrorMessage(con));
exit(1);
}
PQclear(res);
ttl = (naccounts * scale) >> 4;
for (i = 0; i < naccounts * scale; i++) {
int j = i + 1;
snprintf(sql, 256, "%d\t%d\t%d\t\n", j, i / naccounts + 1, 0);
if (PQputline(con, sql)) {
fprintf(stderr, "PQputline failed\n");
exit(1);
}
if (j % ttl == 0)
fprintf(stderr, "%d tuples done.\n", j);
}
if (PQputline(con, "\\.\n")) {
fprintf(stderr, "very last PQputline failed\n");
exit(1);
}
if (PQendcopy(con)) {
fprintf(stderr, "PQendcopy failed\n");
exit(1);
}
executeStatement(con, "commit");
/*
* create indexes
*/
if (!is_mot) {
fprintf(stderr, "set primary key...\n");
#ifdef PGXC
/*
* If all the tables are distributed according to bid, create an index on it
* instead.
*/
if (use_branch) {
for (i = 0; i < (int)lengthof(DDLAFTERs_bid); i++) {
char buffer[256] = {0};
errno_t sc_rc = strncpy_s(buffer, sizeof(buffer), DDLAFTERs_bid[i], strlen(DDLAFTERs[i]));
securec_check(sc_rc, "\0", "\0");
if (index_tablespace != NULL) {
char* escape_tablespace = NULL;
escape_tablespace = PQescapeIdentifier(con, index_tablespace, strlen(index_tablespace));
snprintf(
buffer + strlen(buffer), 256 - strlen(buffer), " using index tablespace %s", escape_tablespace);
PQfreemem(escape_tablespace);
}
executeStatement(con, buffer, true);
}
} else
#endif
for (i = 0; i < (int)lengthof(DDLAFTERs); i++) {
char buffer[256] = {0};
errno_t sc_rc = strncpy_s(buffer, sizeof(buffer), DDLAFTERs[i], strlen(DDLAFTERs[i]));
securec_check(sc_rc, "\0", "\0");
if (index_tablespace != NULL) {
char* escape_tablespace1 = NULL;
escape_tablespace1 = PQescapeIdentifier(con, index_tablespace, strlen(index_tablespace));
snprintf(buffer + strlen(buffer),
256 - strlen(buffer),
" using index tablespace %s",
escape_tablespace1);
PQfreemem(escape_tablespace1);
}
executeStatement(con, buffer, true);
}
}
/* vacuum */
fprintf(stderr, "vacuum...");
executeStatement(con, "vacuum analyze pgbench_branches");
executeStatement(con, "vacuum analyze pgbench_tellers");
executeStatement(con, "vacuum analyze pgbench_accounts");
executeStatement(con, "vacuum analyze pgbench_history");
fprintf(stderr, "done.\n");
PQfinish(con);
}
/*
* Parse the raw sql and replace :param to $n.
*/
static bool parseQuery(Command* cmd, const char* raw_sql)
{
char *sql, *p;
sql = xstrdup(raw_sql);
cmd->argc = 1;
p = sql;
while ((p = strchr(p, ':')) != NULL) {
char var[12];
char* name = NULL;
int eaten;
name = parseVariable(p, &eaten);
if (name == NULL) {
while (*p == ':') {
p++;
}
continue;
}
if (cmd->argc >= MAX_ARGS) {
fprintf(stderr, "statement has too many arguments (maximum is %d): %s\n", MAX_ARGS - 1, raw_sql);
return false;
}
sprintf(var, "$%d", cmd->argc);
p = replaceVariable(&sql, p, eaten, var);
cmd->argv[cmd->argc] = name;
cmd->argc++;
}
cmd->argv[0] = sql;
return true;
}
/* Parse a command; return a Command struct, or NULL if it's a comment */
static Command* process_commands(char* buf)
{
const char delim[] = " \f\n\r\t\v";
Command* my_commands = NULL;
int j;
char *p = NULL;;
char *tok = NULL;
/* Make the string buf end at the next newline */
if ((p = strchr(buf, '\n')) != NULL)
*p = '\0';
/* Skip leading whitespace */
p = buf;
while (isspace((unsigned char)*p)) {
p++;
}
/* If the line is empty or actually a comment, we're done */
if (*p == '\0' || strncmp(p, "--", 2) == 0)
return NULL;
/* Allocate and initialize Command structure */
my_commands = (Command*)xmalloc(sizeof(Command));
my_commands->line = xstrdup(buf);
my_commands->command_num = num_commands++;
my_commands->type = 0; /* until set */
my_commands->argc = 0;
if (*p == '\\') {
my_commands->type = META_COMMAND;
j = 0;
tok = strtok(++p, delim);
while (tok != NULL) {
my_commands->argv[j++] = xstrdup(tok);
my_commands->argc++;
tok = strtok(NULL, delim);
}
if (pg_strcasecmp(my_commands->argv[0], "setrandom") == 0) {
if (my_commands->argc < 4) {
fprintf(stderr, "%s: missing argument\n", my_commands->argv[0]);
exit(1);
}
for (j = 4; j < my_commands->argc; j++)
fprintf(stderr, "%s: extra argument \"%s\" ignored\n", my_commands->argv[0], my_commands->argv[j]);
} else if (pg_strcasecmp(my_commands->argv[0], "set") == 0) {
if (my_commands->argc < 3) {
fprintf(stderr, "%s: missing argument\n", my_commands->argv[0]);
exit(1);
}
for (j = ((my_commands->argc < 5) ? 3 : 5); j < my_commands->argc; j++)
fprintf(stderr, "%s: extra argument \"%s\" ignored\n", my_commands->argv[0], my_commands->argv[j]);
} else if (pg_strcasecmp(my_commands->argv[0], "sleep") == 0) {
if (my_commands->argc < 2) {
fprintf(stderr, "%s: missing argument\n", my_commands->argv[0]);
exit(1);
}
/*
* Split argument into number and unit to allow "sleep 1ms" etc.
* We don't have to terminate the number argument with null
* because it will be parsed with atoi, which ignores trailing
* non-digit characters.
*/
if (my_commands->argv[1][0] != ':') {
char* c = my_commands->argv[1];
while (isdigit((unsigned char)*c)) {
c++;
}
if (*c) {
my_commands->argv[2] = c;
if (my_commands->argc < 3)
my_commands->argc = 3;
}
}
if (my_commands->argc >= 3) {
if (pg_strcasecmp(my_commands->argv[2], "us") != 0 && pg_strcasecmp(my_commands->argv[2], "ms") != 0 &&
pg_strcasecmp(my_commands->argv[2], "s") != 0) {
fprintf(stderr,
"%s: unknown time unit '%s' - must be us, ms or s\n",
my_commands->argv[0],
my_commands->argv[2]);
exit(1);
}
}
for (j = 3; j < my_commands->argc; j++)
fprintf(stderr, "%s: extra argument \"%s\" ignored\n", my_commands->argv[0], my_commands->argv[j]);
} else if (pg_strcasecmp(my_commands->argv[0], "setshell") == 0) {
if (my_commands->argc < 3) {
fprintf(stderr, "%s: missing argument\n", my_commands->argv[0]);
exit(1);
}
} else if (pg_strcasecmp(my_commands->argv[0], "shell") == 0) {
if (my_commands->argc < 1) {
fprintf(stderr, "%s: missing command\n", my_commands->argv[0]);
exit(1);
}
} else {
fprintf(stderr, "Invalid command %s\n", my_commands->argv[0]);
exit(1);
}
} else {
my_commands->type = SQL_COMMAND;
switch (querymode) {
case QUERY_SIMPLE:
my_commands->argv[0] = xstrdup(p);
my_commands->argc++;
break;
case QUERY_EXTENDED:
case QUERY_PREPARED:
if (!parseQuery(my_commands, p))
exit(1);
break;
default:
exit(1);
}
}
return my_commands;
}
static int process_file(char* filename)
{
#define COMMANDS_ALLOC_NUM 128
Command** my_commands;
FILE* fd = NULL;
int lineno;
char buf[BUFSIZ * 8];
int alloc_num;
if (num_files >= MAX_FILES) {
fprintf(stderr, "Up to only %d SQL files are allowed\n", MAX_FILES);
exit(1);
}
alloc_num = COMMANDS_ALLOC_NUM;
my_commands = (Command**)xmalloc(sizeof(Command*) * alloc_num);
if (strcmp(filename, "-") == 0)
fd = stdin;
else if ((fd = fopen(filename, "r")) == NULL) {
fprintf(stderr, "%s: %s\n", filename, strerror(errno));
return false;
}
lineno = 0;
while (fgets(buf, sizeof(buf), fd) != NULL) {
Command* command = NULL;
command = process_commands(buf);
if (command == NULL)
continue;
my_commands[lineno] = command;
lineno++;
if (lineno >= alloc_num) {
alloc_num += COMMANDS_ALLOC_NUM;
my_commands = (Command**)xrealloc(my_commands, sizeof(Command*) * alloc_num);
}
}
fclose(fd);
my_commands[lineno] = NULL;
sql_files[num_files++] = my_commands;
return true;
}
static Command** process_builtin(char* tb)
{
#define COMMANDS_ALLOC_NUM 128
Command** my_commands;
int lineno;
char buf[BUFSIZ];
int alloc_num;
alloc_num = COMMANDS_ALLOC_NUM;
my_commands = (Command**)xmalloc(sizeof(Command*) * alloc_num);
lineno = 0;
for (;;) {
char* p = NULL;
Command* command = NULL;
p = buf;
while (*tb && *tb != '\n') {
*p++ = *tb++;
}
if (*tb == '\0')
break;
if (*tb == '\n')
tb++;
*p = '\0';
command = process_commands(buf);
if (command == NULL) {
continue;
}
my_commands[lineno] = command;
lineno++;
if (lineno >= alloc_num) {
alloc_num += COMMANDS_ALLOC_NUM;
my_commands = (Command**)xrealloc(my_commands, sizeof(Command*) * alloc_num);
}
}
my_commands[lineno] = NULL;
return my_commands;
}
/* print out results */
static void printResults(int ttype, int normal_xacts, int nclients, TState* threads, int nthreads,
instr_time total_time, instr_time conn_total_time, int64 total_latencies, int64 total_sqlats, int64 throttle_lag,
int64 throttle_lag_max)
{
double time_include, tps_include, tps_exclude;
char* s = NULL;
time_include = INSTR_TIME_GET_DOUBLE(total_time);
tps_include = normal_xacts / time_include;
tps_exclude = normal_xacts / (time_include - (INSTR_TIME_GET_DOUBLE(conn_total_time) / nthreads));
if (ttype == 0)
s = "TPC-B (sort of)";
else if (ttype == 2)
s = "Update only pgbench_accounts";
else if (ttype == 1)
s = "SELECT only";
else
s = "Custom query";
printf("transaction type: %s\n", s);
printf("scaling factor: %d\n", scale);
printf("query mode: %s\n", QUERYMODE[querymode]);
printf("number of clients: %d\n", nclients);
printf("number of threads: %d\n", nthreads);
if (duration <= 0) {
printf("number of transactions per client: %d\n", nxacts);
printf("number of transactions actually processed: %d/%d\n", normal_xacts, nxacts * nclients);
} else {
printf("duration: %d s\n", duration);
printf("number of transactions actually processed: %d\n", normal_xacts);
}
if (throttle_delay || progress) {
/* compute and show latency average and standard deviation */
double latency = 0.001 * total_latencies / normal_xacts;
double sqlat = (double)total_sqlats / normal_xacts;
printf("latency average: %.3f ms\n"
"latency stddev: %.3f ms\n",
latency,
0.001 * sqrt(sqlat - 1000000.0 * latency * latency));
} else {
/* only an average latency computed from the duration is available */
printf("latency average: %.3f ms\n", 1000.0 * duration * nclients / normal_xacts);
}
if (throttle_delay) {
/*
* Report average transaction lag under rate limit throttling. This
* is the delay between scheduled and actual start times for the
* transaction. The measured lag may be caused by thread/client load,
* the database load, or the Poisson throttling process.
*/
printf("rate limit schedule lag: avg %.3f (max %.3f) ms\n",
0.001 * throttle_lag / normal_xacts,
0.001 * throttle_lag_max);
}
printf("tps = %f (including connections establishing)\n", tps_include);
printf("tps = %f (excluding connections establishing)\n", tps_exclude);
/* Report per-command latencies */
if (is_latencies) {
int i;
for (i = 0; i < num_files; i++) {
Command** commands;
if (num_files > 1)
printf("statement latencies in milliseconds, file %d:\n", i + 1);
else
printf("statement latencies in milliseconds:\n");
for (commands = sql_files[i]; *commands != NULL; commands++) {
Command* command = *commands;
int cnum = command->command_num;
double total_time;
instr_time total_exec_elapsed;
int total_exec_count;
int t;
/* Accumulate per-thread data for command */
INSTR_TIME_SET_ZERO(total_exec_elapsed);
total_exec_count = 0;
for (t = 0; t < nthreads; t++) {
TState* thread = &threads[t];
INSTR_TIME_ADD(total_exec_elapsed, thread->exec_elapsed[cnum]);
total_exec_count += thread->exec_count[cnum];
}
if (total_exec_count > 0) {
total_time = INSTR_TIME_GET_MILLISEC(total_exec_elapsed) / (double)total_exec_count;
} else {
total_time = 0.0;
}
printf("\t%f\t%s\n", total_time, command->line);
}
}
}
}
int main(int argc, char** argv)
{
int c;
int nclients = 1; /* default number of simulated clients */
int nthreads = 1; /* default number of threads */
int is_init_mode = 0; /* initialize mode? */
int is_no_vacuum = 0; /* no vacuum at all before testing? */
int do_vacuum_accounts = 0; /* do vacuum accounts before testing? */
int ttype = 0; /* transaction type. 0: TPC-B, 1: SELECT only,
* 2: skip update of branches and tellers */
int optindex;
char* filename = NULL;
bool scale_given = false;
CState* state = NULL; /* status of clients */
TState* threads = NULL; /* array of thread */
instr_time start_time; /* start up time */
instr_time total_time;
instr_time conn_total_time;
int total_xacts = 0;
int64 total_latencies = 0;
int64 total_sqlats = 0;
int64 throttle_lag = 0;
int64 throttle_lag_max = 0;
int i;
static struct option long_options[] = {{"index-tablespace", required_argument, NULL, 3},
{"tablespace", required_argument, NULL, 2},
{"unlogged-tables", no_argument, &unlogged_tables, 1},
{NULL, 0, NULL, 0}};
#ifdef HAVE_GETRLIMIT
struct rlimit rlim;
#endif
PGconn* con = NULL;
PGresult* res = NULL;
char* env = NULL;
char val[64];
const char* progname = NULL;
progname = get_progname(argv[0]);
if (argc > 1) {
if (strcmp(argv[1], "--help") == 0 || strcmp(argv[1], "-?") == 0) {
usage(progname);
exit(0);
}
if (strcmp(argv[1], "--version") == 0 || strcmp(argv[1], "-V") == 0) {
puts("pgbench (PostgreSQL) " PG_VERSION);
exit(0);
}
}
#ifdef WIN32
/* stderr is buffered on Win32. */
setvbuf(stderr, NULL, _IONBF, 0);
#endif
if ((env = getenv("PGHOST")) != NULL && *env != '\0')
pghost = env;
if ((env = getenv("PGPORT")) != NULL && *env != '\0')
pgport = env;
else if ((env = getenv("PGUSER")) != NULL && *env != '\0')
login = env;
state = (CState*)xmalloc(sizeof(CState));
memset(state, 0, sizeof(CState));
#ifdef PGXC
while ((c = getopt_long(argc, argv, "ih:mknvp:dSNc:j:Crs:t:T:U:lf:D:F:M:O:P:R:W:", long_options, &optindex)) != -1)
#else
while ((c = getopt_long(argc, argv, "ih:mnvp:dSNc:j:Crs:t:T:U:lf:D:F:M:P:R:W:", long_options, &optindex)) != -1)
#endif
{
switch (c) {
case 'i':
is_init_mode++;
break;
#ifdef PGXC
case 'k':
use_branch = true;
break;
#endif
case 'm':
is_mot = true;
break;
case 'h':
pghost = optarg;
break;
case 'n':
is_no_vacuum++;
break;
case 'v':
do_vacuum_accounts++;
break;
case 'p':
pgport = optarg;
break;
case 'd':
debug++;
break;
case 'S':
ttype = 1;
break;
case 'N':
ttype = 2;
break;
case 'c':
nclients = atoi(optarg);
#ifdef HAVE_POLL
if (nclients <= 0)
#else
if (nclients <= 0 || nclients > MAXCLIENTS)
#endif
{
fprintf(stderr, "invalid number of clients: %d\n", nclients);
exit(1);
}
#ifdef HAVE_GETRLIMIT
#ifdef RLIMIT_NOFILE /* most platforms use RLIMIT_NOFILE */
if (getrlimit(RLIMIT_NOFILE, &rlim) == -1)
#else /* but BSD doesn't ... */
if (getrlimit(RLIMIT_OFILE, &rlim) == -1)
#endif /* RLIMIT_NOFILE */
{
fprintf(stderr, "getrlimit failed: %s\n", strerror(errno));
exit(1);
}
if ((int)rlim.rlim_cur <= (nclients + 2)) {
fprintf(stderr,
"You need at least %d open files but you are only allowed to use %ld.\n",
nclients + 2,
(long)rlim.rlim_cur);
fprintf(stderr, "Use limit/ulimit to increase the limit before using pgbench.\n");
exit(1);
}
#endif /* HAVE_GETRLIMIT */
break;
case 'j': /* jobs */
nthreads = atoi(optarg);
if (nthreads <= 0) {
fprintf(stderr, "invalid number of threads: %d\n", nthreads);
exit(1);
}
break;
case 'C':
is_connect = true;
break;
case 'r':
is_latencies = true;
break;
case 's':
scale_given = true;
scale = atoi(optarg);
if (scale <= 0) {
fprintf(stderr, "invalid scaling factor: %d\n", scale);
exit(1);
}
break;
case 't':
if (duration > 0) {
fprintf(stderr, "specify either a number of transactions (-t) or a duration (-T), not both.\n");
exit(1);
}
nxacts = atoi(optarg);
if (nxacts <= 0) {
fprintf(stderr, "invalid number of transactions: %d\n", nxacts);
exit(1);
}
break;
case 'T':
if (nxacts > 0) {
fprintf(stderr, "specify either a number of transactions (-t) or a duration (-T), not both.\n");
exit(1);
}
duration = atoi(optarg);
if (duration <= 0) {
fprintf(stderr, "invalid duration: %d\n", duration);
exit(1);
}
break;
case 'U':
login = optarg;
break;
case 'W':
secrete = optarg;
break;
case 'l':
use_log = true;
break;
case 'f':
ttype = 3;
filename = optarg;
if (process_file(filename) == false || *sql_files[num_files - 1] == NULL)
exit(1);
break;
case 'D': {
char* p = NULL;
if ((p = strchr(optarg, '=')) == NULL || p == optarg || *(p + 1) == '\0') {
fprintf(stderr, "invalid variable definition: %s\n", optarg);
exit(1);
}
*p++ = '\0';
if (!putVariable(&state[0], "option", optarg, p))
exit(1);
} break;
case 'F':
fillfactor = atoi(optarg);
if (is_mot) {
fprintf(stderr, "fillfactor is not supported with memory tables\n");
exit(1);
}
if ((fillfactor < 10) || (fillfactor > 100)) {
fprintf(stderr, "invalid fillfactor: %d\n", fillfactor);
exit(1);
}
break;
case 'M':
if (num_files > 0) {
fprintf(stderr, "query mode (-M) should be specifiled before transaction scripts (-f)\n");
exit(1);
}
for (int iquerymode = 0; iquerymode < NUM_QUERYMODE; iquerymode++) {
querymode = (QueryMode)iquerymode;
if (strcmp(optarg, QUERYMODE[querymode]) == 0)
break;
}
if (querymode >= NUM_QUERYMODE) {
fprintf(stderr, "invalid query mode (-M): %s\n", optarg);
exit(1);
}
break;
#ifdef PGXC
case 'O':
orient = xstrdup(optarg);
break;
#endif
case 'P':
progress = atoi(optarg);
if (progress <= 0) {
fprintf(stderr, "thread progress delay (-P) must be positive (%s)\n", optarg);
exit(1);
}
break;
case 'R': {
/* get a double from the beginning of option value */
double throttle_value = atof(optarg);
if (throttle_value <= 0.0) {
fprintf(stderr, "invalid rate limit: %s\n", optarg);
exit(1);
}
/* Invert rate limit into a time offset */
throttle_delay = (int64)(1000000.0 / throttle_value);
} break;
case 0:
/* This covers long options which take no argument. */
break;
case 2: /* tablespace */
if (is_mot) {
fprintf(stderr, "tablespace is not supported with memory tables\n");
exit(1);
}
tablespace = optarg;
break;
case 3: /* index-tablespace */
if (is_mot) {
fprintf(stderr, "index_tablespace is not supported with memory tables\n");
exit(1);
}
index_tablespace = optarg;
break;
default:
fprintf(stderr, _("Try \"%s --help\" for more information.\n"), progname);
exit(1);
break;
}
}
/* compute a per thread delay */
throttle_delay *= nthreads;
if (orient) {
#define MIN_LEN(s, x) (((strlen(s) > x) ? x : strlen(s)))
if (strncmp(orient, "row", MIN_LEN(orient, 3)) == 0) {
with_options = xstrdup("orientation = row");
} else if (strncmp(orient, "column", MIN_LEN(orient, 6)) == 0) {
with_options = xstrdup("orientation = column");
} else if (strncmp(orient, "orc", MIN_LEN(orient, 3)) == 0) {
with_options = xstrdup("orientation = orc, version=0.12");
} else {
fprintf(
stderr, "Unknown orientation option: %s.\nTry \"%s --help\" for more information.\n", orient, progname);
exit(1);
}
}
if (argc > optind)
dbName = argv[optind];
else {
if ((env = getenv("PGDATABASE")) != NULL && *env != '\0') {
dbName = env;
} else if (login != NULL && *login != '\0') {
dbName = login;
} else {
dbName = "";
}
}
if (is_init_mode) {
init();
if (orient) {
free(orient);
orient = NULL;
}
if (with_options) {
free(with_options);
with_options = NULL;
}
exit(0);
}
/* Use DEFAULT_NXACTS if neither nxacts nor duration is specified. */
if (nxacts <= 0 && duration <= 0)
nxacts = DEFAULT_NXACTS;
if (nclients % nthreads != 0) {
fprintf(stderr, "number of clients (%d) must be a multiple of number of threads (%d)\n", nclients, nthreads);
exit(1);
}
/*
* is_latencies only works with multiple threads in thread-based
* implementations, not fork-based ones, because it supposes that the
* parent can see changes made to the per-thread execution stats by child
* threads. It seems useful enough to accept despite this limitation, but
* perhaps we should FIXME someday (by passing the stats data back up
* through the parent-to-child pipes).
*/
#ifndef ENABLE_THREAD_SAFETY
if (is_latencies && nthreads > 1) {
fprintf(stderr, "-r does not work with -j larger than 1 on this platform.\n");
exit(1);
}
#endif
// Prepared protocol only prepares the statement once so reconnect for each
// query submission won't work.
//
if (querymode == QUERY_PREPARED && is_connect) {
fprintf(stderr, "-C does not work with -M prepared protocol.\n");
exit(1);
}
/*
* save main process id in the global variable because process id will be
* changed after fork.
*/
main_pid = (int)getpid();
progress_nclients = nclients;
progress_nthreads = nthreads;
if (nclients > 1) {
state = (CState*)xrealloc(state, sizeof(CState) * nclients);
memset(state + 1, 0, sizeof(CState) * (nclients - 1));
/* copy any -D switch values to all clients */
for (i = 1; i < nclients; i++) {
int j;
state[i].id = i;
for (j = 0; j < state[0].nvariables; j++) {
if (!putVariable(&state[i], "startup", state[0].variables[j].name, state[0].variables[j].value))
exit(1);
}
}
}
if (debug) {
if (duration <= 0)
printf(
"pghost: %s pgport: %s nclients: %d nxacts: %d dbName: %s\n", pghost, pgport, nclients, nxacts, dbName);
else
printf("pghost: %s pgport: %s nclients: %d duration: %d dbName: %s\n",
pghost,
pgport,
nclients,
duration,
dbName);
}
/* opening connection... */
con = doConnect();
if (con == NULL)
exit(1);
if (PQstatus(con) == CONNECTION_BAD) {
fprintf(stderr, "Connection to database '%s' failed.\n", dbName);
fprintf(stderr, "%s", PQerrorMessage(con));
exit(1);
}
if (ttype != 3) {
/*
* get the scaling factor that should be same as count(*) from
* pgbench_branches if this is not a custom query
*/
res = PQexec(con, "select count(*) from pgbench_branches");
if (PQresultStatus(res) != PGRES_TUPLES_OK) {
fprintf(stderr, "%s", PQerrorMessage(con));
exit(1);
}
scale = atoi(PQgetvalue(res, 0, 0));
if (scale < 0) {
fprintf(stderr, "count(*) from pgbench_branches invalid (%d)\n", scale);
exit(1);
}
PQclear(res);
/* warn if we override user-given -s switch */
if (scale_given)
fprintf(stderr, "Scale option ignored, using pgbench_branches table count = %d\n", scale);
}
/*
* :scale variables normally get -s or database scale, but don't override
* an explicit -D switch
*/
if (getVariable(&state[0], "scale") == NULL) {
snprintf(val, sizeof(val), "%d", scale);
for (i = 0; i < nclients; i++) {
if (!putVariable(&state[i], "startup", "scale", val))
exit(1);
}
}
if (!is_no_vacuum) {
fprintf(stderr, "starting vacuum...");
executeStatement(con, "vacuum pgbench_branches");
executeStatement(con, "vacuum pgbench_tellers");
executeStatement(con, "truncate pgbench_history");
fprintf(stderr, "end.\n");
if (do_vacuum_accounts) {
fprintf(stderr, "starting vacuum pgbench_accounts...");
executeStatement(con, "vacuum analyze pgbench_accounts");
fprintf(stderr, "end.\n");
}
}
PQfinish(con);
/* set random seed */
INSTR_TIME_SET_CURRENT(start_time);
srandom((unsigned int)INSTR_TIME_GET_MICROSEC(start_time));
/* process builtin SQL scripts */
switch (ttype) {
case 0:
#ifdef PGXC
if (use_branch)
sql_files[0] = process_builtin(tpc_b_bid);
else
#endif
sql_files[0] = process_builtin(tpc_b);
num_files = 1;
break;
case 1:
sql_files[0] = process_builtin(select_only);
num_files = 1;
break;
case 2:
#ifdef PGXC
if (use_branch)
sql_files[0] = process_builtin(simple_update_bid);
else
#endif
sql_files[0] = process_builtin(simple_update);
num_files = 1;
break;
default:
break;
}
/* set up thread data structures */
threads = (TState*)xmalloc(sizeof(TState) * nthreads);
for (i = 0; i < nthreads; i++) {
TState* thread = &threads[i];
thread->tid = i;
thread->state = &state[nclients / nthreads * i];
thread->nstate = nclients / nthreads;
thread->random_state[0] = random();
thread->random_state[1] = random();
thread->random_state[2] = random();
if (is_latencies) {
/* Reserve memory for the thread to store per-command latencies */
int t;
thread->exec_elapsed = (instr_time*)xmalloc(sizeof(instr_time) * num_commands);
thread->exec_count = (int*)xmalloc(sizeof(int) * num_commands);
for (t = 0; t < num_commands; t++) {
INSTR_TIME_SET_ZERO(thread->exec_elapsed[t]);
thread->exec_count[t] = 0;
}
} else {
thread->exec_elapsed = NULL;
thread->exec_count = NULL;
}
}
/* get start up time */
INSTR_TIME_SET_CURRENT(start_time);
/* set alarm if duration is specified. */
if (duration > 0)
setalarm(duration);
/* start threads */
for (i = 0; i < nthreads; i++) {
TState* thread = &threads[i];
INSTR_TIME_SET_CURRENT(thread->start_time);
/* the first thread (i = 0) is executed by main thread */
if (i > 0) {
int err = pthread_create(&thread->thread, NULL, threadRun, thread);
if (err != 0 || thread->thread == INVALID_THREAD) {
fprintf(stderr, "cannot create thread: %s\n", strerror(err));
exit(1);
}
} else {
thread->thread = INVALID_THREAD;
}
}
/* wait for threads and accumulate results */
total_xacts = 0;
INSTR_TIME_SET_ZERO(conn_total_time);
for (i = 0; i < nthreads; i++) {
void* ret = NULL;
if (threads[i].thread == INVALID_THREAD)
ret = threadRun(&threads[i]);
else
pthread_join(threads[i].thread, &ret);
if (ret != NULL) {
TResult* r = (TResult*)ret;
total_xacts += r->xacts;
total_latencies += r->latencies;
total_sqlats += r->sqlats;
throttle_lag += r->throttle_lag;
if (r->throttle_lag_max > throttle_lag_max)
throttle_lag_max = r->throttle_lag_max;
INSTR_TIME_ADD(conn_total_time, r->conn_time);
free(ret);
}
}
disconnect_all(state, nclients);
/* get end time */
INSTR_TIME_SET_CURRENT(total_time);
INSTR_TIME_SUBTRACT(total_time, start_time);
printResults(ttype,
total_xacts,
nclients,
threads,
nthreads,
total_time,
conn_total_time,
total_latencies,
total_sqlats,
throttle_lag,
throttle_lag_max);
return 0;
}
static void* threadRun(void* arg)
{
TState* thread = (TState*)arg;
CState* state = thread->state;
TResult* result = NULL;
FILE* logfile = NULL; /* per-thread log file */
instr_time start, end;
int nstate = thread->nstate;
int remains = nstate; /* number of remaining clients */
int i, j;
/* for reporting progress: */
int64 thread_start = INSTR_TIME_GET_MICROSEC(thread->start_time);
int64 last_report = thread_start;
int64 next_report = last_report + (int64)progress * 1000000;
int64 last_count = 0, last_lats = 0, last_sqlats = 0, last_lags = 0;
#ifdef HAVE_POLL
struct pollfd* ufds = (pollfd*)xmalloc(nstate * sizeof(pollfd)); /*nstate = nclients /nthreads */
int nfds = 0; /*the count number of fd */
#else
fd_set input_mask;
int maxsock = -1; /* max socket number to be waited, initialized as -1 */
#endif
/*
* Initialize throttling rate target for all of the thread's clients. It
* might be a little more accurate to reset thread->start_time here too.
* The possible drift seems too small relative to typical throttle delay
* times to worry about it.
*/
INSTR_TIME_SET_CURRENT(start);
thread->throttle_trigger = INSTR_TIME_GET_MICROSEC(start);
thread->throttle_lag = 0;
thread->throttle_lag_max = 0;
result = (TResult*)xmalloc(sizeof(TResult));
INSTR_TIME_SET_ZERO(result->conn_time);
/* open log file if requested */
if (use_log) {
char logpath[64];
if (thread->tid == 0)
snprintf(logpath, sizeof(logpath), "pgbench_log.%d", main_pid);
else
snprintf(logpath, sizeof(logpath), "pgbench_log.%d.%d", main_pid, thread->tid);
logfile = fopen(logpath, "w");
if (logfile == NULL) {
fprintf(stderr, "Couldn't open logfile \"%s\": %s", logpath, strerror(errno));
goto done;
}
}
if (!is_connect) {
/* make connections to the database */
for (i = 0; i < nstate; i++) {
if ((state[i].con = doConnect()) == NULL)
goto done;
}
}
/* time after thread and connections set up */
INSTR_TIME_SET_CURRENT(result->conn_time);
INSTR_TIME_SUBTRACT(result->conn_time, thread->start_time);
/* send start up queries in async manner */
for (i = 0; i < nstate; i++) {
CState* st = &state[i];
Command** commands = sql_files[st->use_file];
int prev_ecnt = st->ecnt;
st->use_file = getrand(thread, 0, num_files - 1);
if (!doCustom(thread, st, &result->conn_time, logfile))
remains--; /* I've aborted */
if (st->ecnt > prev_ecnt && commands[st->state]->type == META_COMMAND) {
fprintf(stderr, "Client %d aborted in state %d. Execution meta-command failed.\n", i, st->state);
remains--; /* I've aborted */
PQfinish(st->con);
st->con = NULL;
}
}
while (remains > 0) {
#ifdef HAVE_POLL
nfds = 0; /*the count number of fd */
memset(ufds, 0, nstate * sizeof(pollfd));
#else
FD_ZERO(&input_mask);
maxsock = -1; /* max socket number to be waited, initialized as -1 */
#endif
int64 now_usec = 0;
int64 min_usec = INT64_MAX;
for (i = 0; i < nstate; i++) {
CState* st = &state[i];
Command** commands = sql_files[st->use_file];
int sock;
if (st->con == NULL) {
continue;
} else if (st->sleeping) {
if (st->throttling && timer_exceeded) {
/* interrupt client which has not started a transaction */
remains--;
st->sleeping = 0;
st->throttling = false;
PQfinish(st->con);
st->con = NULL;
continue;
} else /* just a nap from the script */
{
int this_usec;
if (min_usec == INT64_MAX) {
instr_time now;
INSTR_TIME_SET_CURRENT(now);
now_usec = INSTR_TIME_GET_MICROSEC(now);
}
this_usec = st->until - now_usec;
if (min_usec > this_usec)
min_usec = this_usec;
}
} else if (commands[st->state]->type == META_COMMAND) {
min_usec = 0; /* the connection is ready to run */
break;
}
sock = PQsocket(st->con);
if (sock < 0) {
fprintf(stderr, "bad socket: %s\n", strerror(errno));
goto done;
}
#ifdef HAVE_POLL
ufds[nfds].fd = sock;
ufds[nfds].events = POLLIN | POLLPRI | POLLRDHUP | POLLERR | POLLHUP;
++nfds;
#else
FD_SET(sock, &input_mask);
if (maxsock < sock)
maxsock = sock;
#endif
}
#ifdef HAVE_POLL
if (min_usec > 0 && nfds > 0) {
int nsocks; /* return from select(2) */
if (min_usec != INT64_MAX) {
nsocks = poll(ufds, nfds, min_usec / 1000);
} else {
nsocks = poll(ufds, nfds, -1); /*wait for ever, until some events happend in the sockets*/
}
if (nsocks < 0) {
if (errno == EINTR)
continue;
/* must be something wrong */
fprintf(stderr, "poll failed: %s\n", strerror(errno));
goto done;
}
}
for (i = 0; i < nfds; i++) {
CState* st = NULL;
for (j = 0; j < nstate; j++) {
st = &state[j];
if (ufds[i].fd == PQsocket(st->con))
break;
}
Command** commands = sql_files[st->use_file];
int prev_ecnt = st->ecnt;
if (st->con &&
(ufds[i].revents & (POLLIN | POLLPRI | POLLHUP) || commands[st->state]->type == META_COMMAND))
{
if (!doCustom(thread, st, &result->conn_time, logfile))
remains--; /* I've aborted */
ufds[i].revents = 0;
}
if (st->ecnt > prev_ecnt && commands[st->state]->type == META_COMMAND) {
fprintf(stderr, "Client %d aborted in state %d. Execution of meta-command failed.\n", i, st->state);
remains--; /* I've aborted */
PQfinish(st->con);
st->con = NULL;
}
}
#else
if (min_usec > 0 && maxsock != -1) {
int nsocks; /* return from select(2) */
if (min_usec != INT64_MAX) {
struct timeval timeout;
timeout.tv_sec = min_usec / 1000000;
timeout.tv_usec = min_usec % 1000000;
nsocks = select(maxsock + 1, &input_mask, NULL, NULL, &timeout);
} else {
nsocks = select(maxsock + 1, &input_mask, NULL, NULL, NULL);
}
if (nsocks < 0) {
if (errno == EINTR)
continue;
/* must be something wrong */
fprintf(stderr, "select failed: %s\n", strerror(errno));
goto done;
}
}
/* ok, backend returns reply */
for (i = 0; i < nstate; i++) {
CState* st = &state[i];
Command** commands = sql_files[st->use_file];
int prev_ecnt = st->ecnt;
if (st->con && (FD_ISSET(PQsocket(st->con), &input_mask) || commands[st->state]->type == META_COMMAND)) {
if (!doCustom(thread, st, &result->conn_time, logfile))
remains--; /* I've aborted */
}
if (st->ecnt > prev_ecnt && commands[st->state]->type == META_COMMAND) {
fprintf(stderr, "Client %d aborted in state %d. Execution of meta-command failed.\n", i, st->state);
remains--; /* I've aborted */
PQfinish(st->con);
st->con = NULL;
}
}
#endif
#ifdef PTHREAD_FORK_EMULATION
/* each process reports its own progression */
if (progress) {
instr_time now_time;
int64 now;
INSTR_TIME_SET_CURRENT(now_time);
now = INSTR_TIME_GET_MICROSEC(now_time);
if (now >= next_report) {
/* generate and show report */
int64 count = 0, lats = 0, sqlats = 0;
int64 lags = thread->throttle_lag;
int64 run = now - last_report;
double tps, total_run, latency, sqlat, stdev, lag;
for (i = 0; i < nstate; i++) {
count += state[i].cnt;
lats += state[i].txn_latencies;
sqlats += state[i].txn_sqlats;
}
total_run = (now - thread_start) / 1000000.0;
tps = 1000000.0 * (count - last_count) / run;
latency = 0.001 * (lats - last_lats) / (count - last_count);
sqlat = 1.0 * (sqlats - last_sqlats) / (count - last_count);
stdev = 0.001 * sqrt(sqlat - 1000000.0 * latency * latency);
lag = 0.001 * (lags - last_lags) / (count - last_count);
if (throttle_delay)
fprintf(stderr,
"progress %d: %.1f s, %.1f tps, "
"lat %.3f ms stddev %.3f, lag %.3f ms\n",
thread->tid,
total_run,
tps,
latency,
stdev,
lag);
else
fprintf(stderr,
"progress %d: %.1f s, %.1f tps, "
"lat %.3f ms stddev %.3f\n",
thread->tid,
total_run,
tps,
latency,
stdev);
last_count = count;
last_lats = lats;
last_sqlats = sqlats;
last_lags = lags;
last_report = now;
next_report += progress * 1000000;
}
}
#else
/* progress report by thread 0 for all threads */
if (progress && thread->tid == 0) {
instr_time now_time;
int64 now;
INSTR_TIME_SET_CURRENT(now_time);
now = INSTR_TIME_GET_MICROSEC(now_time);
if (now >= next_report) {
/* generate and show report */
int64 count = 0, lats = 0, sqlats = 0, lags = 0;
int64 run = now - last_report;
double tps, total_run, latency, sqlat, lag, stdev;
for (i = 0; i < progress_nclients; i++) {
count += state[i].cnt;
lats += state[i].txn_latencies;
sqlats += state[i].txn_sqlats;
}
for (i = 0; i < progress_nthreads; i++)
lags += thread[i].throttle_lag;
total_run = (now - thread_start) / 1000000.0;
tps = 1000000.0 * (count - last_count) / run;
latency = 0.001 * (lats - last_lats) / (count - last_count);
sqlat = 1.0 * (sqlats - last_sqlats) / (count - last_count);
stdev = 0.001 * sqrt(sqlat - 1000000.0 * latency * latency);
lag = 0.001 * (lags - last_lags) / (count - last_count);
if (throttle_delay)
fprintf(stderr,
"progress: %.1f s, %.1f tps, "
"lat %.3f ms stddev %.3f, lag %.3f ms\n",
total_run,
tps,
latency,
stdev,
lag);
else
fprintf(stderr,
"progress: %.1f s, %.1f tps, "
"lat %.3f ms stddev %.3f\n",
total_run,
tps,
latency,
stdev);
last_count = count;
last_lats = lats;
last_sqlats = sqlats;
last_lags = lags;
last_report = now;
next_report += progress * 1000000;
}
}
#endif /* PTHREAD_FORK_EMULATION */
}
done:
#ifdef HAVE_POLL
free(ufds);
#endif
INSTR_TIME_SET_CURRENT(start);
disconnect_all(state, nstate);
result->xacts = 0;
result->latencies = 0;
result->sqlats = 0;
for (i = 0; i < nstate; i++) {
result->xacts += state[i].cnt;
result->latencies += state[i].txn_latencies;
result->sqlats += state[i].txn_sqlats;
}
result->throttle_lag = thread->throttle_lag;
result->throttle_lag_max = thread->throttle_lag_max;
INSTR_TIME_SET_CURRENT(end);
INSTR_TIME_ACCUM_DIFF(result->conn_time, end, start);
if (logfile)
fclose(logfile);
return result;
}
/*
* Support for duration option: set timer_exceeded after so many seconds.
*/
#ifndef WIN32
static void handle_sig_alarm(SIGNAL_ARGS)
{
timer_exceeded = true;
}
static void setalarm(int seconds)
{
pqsignal(SIGALRM, handle_sig_alarm);
alarm(seconds);
}
#ifndef ENABLE_THREAD_SAFETY
/*
* implements pthread using fork.
*/
typedef struct fork_pthread {
pid_t pid;
int pipes[2];
} fork_pthread;
static int pthread_create(pthread_t* thread, pthread_attr_t* attr, void* (*start_routine)(void*), void* arg)
{
fork_pthread* th = NULL;
void* ret = NULL;
th = (fork_pthread*)xmalloc(sizeof(fork_pthread));
if (pipe(th->pipes) < 0) {
free(th);
return errno;
}
th->pid = fork();
if (th->pid == -1) /* error */
{
free(th);
return errno;
}
if (th->pid != 0) /* in parent process */
{
close(th->pipes[1]);
*thread = th;
return 0;
}
/* in child process */
close(th->pipes[0]);
/* set alarm again because the child does not inherit timers */
if (duration > 0)
setalarm(duration);
ret = start_routine(arg);
write(th->pipes[1], ret, sizeof(TResult));
close(th->pipes[1]);
free(th);
exit(0);
}
static int pthread_join(pthread_t th, void** thread_return)
{
int status;
while (waitpid(th->pid, &status, 0) != th->pid) {
if (errno != EINTR)
return errno;
}
if (thread_return != NULL) {
/* assume result is TResult */
*thread_return = xmalloc(sizeof(TResult));
if (read(th->pipes[0], *thread_return, sizeof(TResult)) != sizeof(TResult)) {
free(*thread_return);
*thread_return = NULL;
}
}
close(th->pipes[0]);
free(th);
return 0;
}
#endif
#else /* WIN32 */
static VOID CALLBACK win32_timer_callback(PVOID lpParameter, BOOLEAN TimerOrWaitFired)
{
timer_exceeded = true;
}
static void setalarm(int seconds)
{
HANDLE queue;
HANDLE timer;
/* This function will be called at most once, so we can cheat a bit. */
queue = CreateTimerQueue();
if (seconds > ((DWORD)-1) / 1000 || !CreateTimerQueueTimer(&timer,
queue,
win32_timer_callback,
NULL,
seconds * 1000,
0,
WT_EXECUTEINTIMERTHREAD | WT_EXECUTEONLYONCE)) {
fprintf(stderr, "Failed to set timer\n");
exit(1);
}
}
/* partial pthread implementation for Windows */
typedef struct win32_pthread {
HANDLE handle;
void* (*routine)(void*);
void* arg;
void* result;
} win32_pthread;
static unsigned __stdcall win32_pthread_run(void* arg)
{
win32_pthread* th = (win32_pthread*)arg;
th->result = th->routine(th->arg);
return 0;
}
static int pthread_create(pthread_t* thread, pthread_attr_t* attr, void* (*start_routine)(void*), void* arg)
{
int save_errno;
win32_pthread* th = NULL;
th = (win32_pthread*)xmalloc(sizeof(win32_pthread));
th->routine = start_routine;
th->arg = arg;
th->result = NULL;
th->handle = (HANDLE)_beginthreadex(NULL, 0, win32_pthread_run, th, 0, NULL);
if (th->handle == NULL) {
save_errno = errno;
free(th);
return save_errno;
}
*thread = th;
return 0;
}
static int pthread_join(pthread_t th, void** thread_return)
{
if (th == NULL || th->handle == NULL)
return errno = EINVAL;
if (WaitForSingleObject(th->handle, INFINITE) != WAIT_OBJECT_0) {
_dosmaperr(GetLastError());
return errno;
}
if (thread_return)
*thread_return = th->result;
CloseHandle(th->handle);
free(th);
return 0;
}
#endif /* WIN32 */