585 lines
14 KiB
C++
585 lines
14 KiB
C++
/*
|
|
* contrib/pg_trgm/trgm_op.c
|
|
*/
|
|
#include "postgres.h"
|
|
#include "knl/knl_variable.h"
|
|
|
|
#include <ctype.h>
|
|
|
|
#include "trgm.h"
|
|
|
|
#include "catalog/pg_type.h"
|
|
#include "tsearch/ts_locale.h"
|
|
|
|
PG_MODULE_MAGIC;
|
|
|
|
float4 trgm_limit = 0.3f;
|
|
|
|
PG_FUNCTION_INFO_V1(set_limit);
|
|
extern "C" Datum set_limit(PG_FUNCTION_ARGS);
|
|
|
|
PG_FUNCTION_INFO_V1(show_limit);
|
|
extern "C" Datum show_limit(PG_FUNCTION_ARGS);
|
|
|
|
PG_FUNCTION_INFO_V1(show_trgm);
|
|
extern "C" Datum show_trgm(PG_FUNCTION_ARGS);
|
|
|
|
PG_FUNCTION_INFO_V1(similarity);
|
|
extern "C" Datum similarity(PG_FUNCTION_ARGS);
|
|
|
|
PG_FUNCTION_INFO_V1(similarity_dist);
|
|
extern "C" Datum similarity_dist(PG_FUNCTION_ARGS);
|
|
|
|
PG_FUNCTION_INFO_V1(similarity_op);
|
|
extern "C" Datum similarity_op(PG_FUNCTION_ARGS);
|
|
|
|
Datum set_limit(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 nlimit = PG_GETARG_FLOAT4(0);
|
|
|
|
if (nlimit < 0 || nlimit > 1.0)
|
|
elog(ERROR, "wrong limit, should be between 0 and 1");
|
|
trgm_limit = nlimit;
|
|
PG_RETURN_FLOAT4(trgm_limit);
|
|
}
|
|
|
|
Datum show_limit(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT4(trgm_limit);
|
|
}
|
|
|
|
static int comp_trgm(const void* a, const void* b)
|
|
{
|
|
return CMPTRGM(a, b);
|
|
}
|
|
|
|
static int unique_array(trgm* a, int len)
|
|
{
|
|
trgm *curend, *tmp;
|
|
|
|
curend = tmp = a;
|
|
while (tmp - a < len) {
|
|
if (CMPTRGM(tmp, curend)) {
|
|
curend++;
|
|
CPTRGM(curend, tmp);
|
|
tmp++;
|
|
} else {
|
|
tmp++;
|
|
}
|
|
}
|
|
|
|
return curend + 1 - a;
|
|
}
|
|
|
|
#ifdef KEEPONLYALNUM
|
|
#define iswordchr(c) (t_isalpha(c) || t_isdigit(c))
|
|
#else
|
|
#define iswordchr(c) (!t_isspace(c))
|
|
#endif
|
|
|
|
/*
|
|
* Finds first word in string, returns pointer to the word,
|
|
* endword points to the character after word
|
|
*/
|
|
static char* find_word(char* str, int lenstr, char** endword, int* charlen)
|
|
{
|
|
char* beginword = str;
|
|
|
|
while (beginword - str < lenstr && !iswordchr(beginword))
|
|
beginword += pg_mblen(beginword);
|
|
|
|
if (beginword - str >= lenstr)
|
|
return NULL;
|
|
|
|
*endword = beginword;
|
|
*charlen = 0;
|
|
while (*endword - str < lenstr && iswordchr(*endword)) {
|
|
*endword += pg_mblen(*endword);
|
|
(*charlen)++;
|
|
}
|
|
|
|
return beginword;
|
|
}
|
|
|
|
#ifdef USE_WIDE_UPPER_LOWER
|
|
static void cnt_trigram(trgm* tptr, char* str, int bytelen)
|
|
{
|
|
if (bytelen == 3) {
|
|
CPTRGM(tptr, str);
|
|
} else {
|
|
pg_crc32 crc;
|
|
|
|
INIT_CRC32(crc);
|
|
COMP_CRC32(crc, str, bytelen);
|
|
FIN_CRC32(crc);
|
|
|
|
/*
|
|
* use only 3 upper bytes from crc, hope, it's good enough hashing
|
|
*/
|
|
CPTRGM(tptr, &crc);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Adds trigrams from words (already padded).
|
|
*/
|
|
static trgm* make_trigrams(trgm* tptr, char* str, int bytelen, int charlen)
|
|
{
|
|
char* ptr = str;
|
|
|
|
if (charlen < 3) {
|
|
return tptr;
|
|
}
|
|
|
|
#ifdef USE_WIDE_UPPER_LOWER
|
|
if (pg_database_encoding_max_length() > 1) {
|
|
int lenfirst = pg_mblen(str), lenmiddle = pg_mblen(str + lenfirst),
|
|
lenlast = pg_mblen(str + lenfirst + lenmiddle);
|
|
|
|
while ((ptr - str) + lenfirst + lenmiddle + lenlast <= bytelen) {
|
|
cnt_trigram(tptr, ptr, lenfirst + lenmiddle + lenlast);
|
|
|
|
ptr += lenfirst;
|
|
tptr++;
|
|
|
|
lenfirst = lenmiddle;
|
|
lenmiddle = lenlast;
|
|
lenlast = pg_mblen(ptr + lenfirst + lenmiddle);
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
Assert(bytelen == charlen);
|
|
|
|
while (ptr - str < bytelen - 2 /* number of trigrams = strlen - 2 */) {
|
|
CPTRGM(tptr, ptr);
|
|
ptr++;
|
|
tptr++;
|
|
}
|
|
}
|
|
|
|
return tptr;
|
|
}
|
|
|
|
TRGM* generate_trgm(char* str, int slen)
|
|
{
|
|
TRGM* trg = NULL;
|
|
char* buf = NULL;
|
|
trgm* tptr = NULL;
|
|
int len, charlen, bytelen;
|
|
char *bword = NULL;
|
|
char *eword = NULL;
|
|
|
|
trg = (TRGM*)palloc(TRGMHDRSIZE + sizeof(trgm) * (slen / 2 + 1) * 3);
|
|
trg->flag = ARRKEY;
|
|
SET_VARSIZE(trg, TRGMHDRSIZE);
|
|
|
|
if (slen + LPADDING + RPADDING < 3 || slen == 0) {
|
|
return trg;
|
|
}
|
|
|
|
tptr = GETARR(trg);
|
|
|
|
buf = (char*)palloc(sizeof(char) * (slen + 4));
|
|
|
|
if (LPADDING > 0) {
|
|
*buf = ' ';
|
|
if (LPADDING > 1) {
|
|
*(buf + 1) = ' ';
|
|
}
|
|
}
|
|
|
|
eword = str;
|
|
while ((bword = find_word(eword, slen - (eword - str), &eword, &charlen)) != NULL) {
|
|
#ifdef IGNORECASE
|
|
bword = lowerstr_with_len(bword, eword - bword);
|
|
bytelen = strlen(bword);
|
|
#else
|
|
bytelen = eword - bword;
|
|
#endif
|
|
|
|
memcpy(buf + LPADDING, bword, bytelen);
|
|
|
|
#ifdef IGNORECASE
|
|
pfree(bword);
|
|
#endif
|
|
buf[LPADDING + bytelen] = ' ';
|
|
buf[LPADDING + bytelen + 1] = ' ';
|
|
|
|
/*
|
|
* count trigrams
|
|
*/
|
|
tptr = make_trigrams(tptr, buf, bytelen + LPADDING + RPADDING, charlen + LPADDING + RPADDING);
|
|
}
|
|
|
|
pfree(buf);
|
|
|
|
if ((len = tptr - GETARR(trg)) == 0)
|
|
return trg;
|
|
|
|
if (len > 0) {
|
|
qsort((void*)GETARR(trg), len, sizeof(trgm), comp_trgm);
|
|
len = unique_array(GETARR(trg), len);
|
|
}
|
|
|
|
SET_VARSIZE(trg, CALCGTSIZE(ARRKEY, len));
|
|
|
|
return trg;
|
|
}
|
|
|
|
/*
|
|
* Extract the next non-wildcard part of a search string, ie, a word bounded
|
|
* by '_' or '%' meta-characters, non-word characters or string end.
|
|
*
|
|
* str: source string, of length lenstr bytes (need not be null-terminated)
|
|
* buf: where to return the substring (must be long enough)
|
|
* *bytelen: receives byte length of the found substring
|
|
* *charlen: receives character length of the found substring
|
|
*
|
|
* Returns pointer to end+1 of the found substring in the source string.
|
|
* Returns NULL if no word found (in which case buf, bytelen, charlen not set)
|
|
*
|
|
* If the found word is bounded by non-word characters or string boundaries
|
|
* then this function will include corresponding padding spaces into buf.
|
|
*/
|
|
static const char* get_wildcard_part(const char* str, int lenstr, char* buf, int* bytelen, int* charlen)
|
|
{
|
|
const char* beginword = str;
|
|
const char* endword = NULL;
|
|
char* s = buf;
|
|
bool in_leading_wildcard_meta = false;
|
|
bool in_trailing_wildcard_meta = false;
|
|
bool in_escape = false;
|
|
int clen;
|
|
|
|
/*
|
|
* Find the first word character, remembering whether preceding character
|
|
* was wildcard meta-character. Note that the in_escape state persists
|
|
* from this loop to the next one, since we may exit at a word character
|
|
* that is in_escape.
|
|
*/
|
|
while (beginword - str < lenstr) {
|
|
if (in_escape) {
|
|
if (iswordchr(beginword))
|
|
break;
|
|
in_escape = false;
|
|
in_leading_wildcard_meta = false;
|
|
} else {
|
|
if (ISESCAPECHAR(beginword)) {
|
|
in_escape = true;
|
|
} else if (ISWILDCARDCHAR(beginword)) {
|
|
in_leading_wildcard_meta = true;
|
|
} else if (iswordchr(beginword)) {
|
|
break;
|
|
} else {
|
|
in_leading_wildcard_meta = false;
|
|
}
|
|
}
|
|
beginword += pg_mblen(beginword);
|
|
}
|
|
|
|
/*
|
|
* Handle string end.
|
|
*/
|
|
if (beginword - str >= lenstr)
|
|
return NULL;
|
|
|
|
/*
|
|
* Add left padding spaces if preceding character wasn't wildcard
|
|
* meta-character.
|
|
*/
|
|
*charlen = 0;
|
|
if (!in_leading_wildcard_meta) {
|
|
if (LPADDING > 0) {
|
|
*s++ = ' ';
|
|
(*charlen)++;
|
|
if (LPADDING > 1) {
|
|
*s++ = ' ';
|
|
(*charlen)++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Copy data into buf until wildcard meta-character, non-word character or
|
|
* string boundary. Strip escapes during copy.
|
|
*/
|
|
endword = beginword;
|
|
while (endword - str < lenstr) {
|
|
clen = pg_mblen(endword);
|
|
if (in_escape) {
|
|
if (iswordchr(endword)) {
|
|
memcpy(s, endword, clen);
|
|
(*charlen)++;
|
|
s += clen;
|
|
} else {
|
|
/*
|
|
* Back up endword to the escape character when stopping at
|
|
* an escaped char, so that subsequent get_wildcard_part will
|
|
* restart from the escape character. We assume here that
|
|
* escape chars are single-byte.
|
|
*/
|
|
endword--;
|
|
break;
|
|
}
|
|
in_escape = false;
|
|
} else {
|
|
if (ISESCAPECHAR(endword)) {
|
|
in_escape = true;
|
|
} else if (ISWILDCARDCHAR(endword)) {
|
|
in_trailing_wildcard_meta = true;
|
|
break;
|
|
} else if (iswordchr(endword)) {
|
|
memcpy(s, endword, clen);
|
|
(*charlen)++;
|
|
s += clen;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
endword += clen;
|
|
}
|
|
|
|
/*
|
|
* Add right padding spaces if next character isn't wildcard
|
|
* meta-character.
|
|
*/
|
|
if (!in_trailing_wildcard_meta) {
|
|
if (RPADDING > 0) {
|
|
*s++ = ' ';
|
|
(*charlen)++;
|
|
if (RPADDING > 1) {
|
|
*s++ = ' ';
|
|
(*charlen)++;
|
|
}
|
|
}
|
|
}
|
|
|
|
*bytelen = s - buf;
|
|
return endword;
|
|
}
|
|
|
|
/*
|
|
* Generates trigrams for wildcard search string.
|
|
*
|
|
* Returns array of trigrams that must occur in any string that matches the
|
|
* wildcard string. For example, given pattern "a%bcd%" the trigrams
|
|
* " a", "bcd" would be extracted.
|
|
*/
|
|
TRGM* generate_wildcard_trgm(const char* str, int slen)
|
|
{
|
|
TRGM* trg = NULL;
|
|
char *buf = NULL;
|
|
char *buf2 = NULL;
|
|
trgm* tptr = NULL;
|
|
int len, charlen, bytelen;
|
|
const char* eword = NULL;
|
|
|
|
trg = (TRGM*)palloc(TRGMHDRSIZE + sizeof(trgm) * (slen / 2 + 1) * 3);
|
|
trg->flag = ARRKEY;
|
|
SET_VARSIZE(trg, TRGMHDRSIZE);
|
|
|
|
if (slen + LPADDING + RPADDING < 3 || slen == 0) {
|
|
return trg;
|
|
}
|
|
|
|
tptr = GETARR(trg);
|
|
|
|
buf = (char*)palloc(sizeof(char) * (slen + 4));
|
|
|
|
/*
|
|
* Extract trigrams from each substring extracted by get_wildcard_part.
|
|
*/
|
|
eword = str;
|
|
while ((eword = get_wildcard_part(eword, slen - (eword - str), buf, &bytelen, &charlen)) != NULL) {
|
|
#ifdef IGNORECASE
|
|
buf2 = lowerstr_with_len(buf, bytelen);
|
|
bytelen = strlen(buf2);
|
|
#else
|
|
buf2 = buf;
|
|
#endif
|
|
|
|
/*
|
|
* count trigrams
|
|
*/
|
|
tptr = make_trigrams(tptr, buf2, bytelen, charlen);
|
|
#ifdef IGNORECASE
|
|
pfree(buf2);
|
|
#endif
|
|
}
|
|
|
|
pfree(buf);
|
|
|
|
if ((len = tptr - GETARR(trg)) == 0)
|
|
return trg;
|
|
|
|
/*
|
|
* Make trigrams unique.
|
|
*/
|
|
if (len > 0) {
|
|
qsort((void*)GETARR(trg), len, sizeof(trgm), comp_trgm);
|
|
len = unique_array(GETARR(trg), len);
|
|
}
|
|
|
|
SET_VARSIZE(trg, CALCGTSIZE(ARRKEY, len));
|
|
|
|
return trg;
|
|
}
|
|
|
|
uint32 trgm2int(trgm* ptr)
|
|
{
|
|
uint32 val = 0;
|
|
|
|
val |= *(((unsigned char*)ptr));
|
|
val <<= 8;
|
|
val |= *(((unsigned char*)ptr) + 1);
|
|
val <<= 8;
|
|
val |= *(((unsigned char*)ptr) + 2);
|
|
|
|
return val;
|
|
}
|
|
|
|
Datum show_trgm(PG_FUNCTION_ARGS)
|
|
{
|
|
text* in = PG_GETARG_TEXT_P(0);
|
|
TRGM* trg = NULL;
|
|
Datum* d = NULL;
|
|
ArrayType* a = NULL;
|
|
trgm* ptr = NULL;
|
|
int i;
|
|
const int bufsize = 12;
|
|
|
|
trg = generate_trgm(VARDATA(in), VARSIZE(in) - VARHDRSZ);
|
|
d = (Datum*)palloc(sizeof(Datum) * (1 + ARRNELEM(trg)));
|
|
|
|
for (i = 0, ptr = GETARR(trg); i < ARRNELEM(trg); i++, ptr++) {
|
|
text* item = (text*)palloc(VARHDRSZ + Max(bufsize, pg_database_encoding_max_length() * 3));
|
|
|
|
if (pg_database_encoding_max_length() > 1 && !ISPRINTABLETRGM(ptr)) {
|
|
int rc = snprintf_s(VARDATA(item), bufsize, bufsize - 1, "0x%06x", trgm2int(ptr));
|
|
securec_check_ss(rc, "", "");
|
|
SET_VARSIZE(item, VARHDRSZ + strlen(VARDATA(item)));
|
|
} else {
|
|
SET_VARSIZE(item, VARHDRSZ + 3);
|
|
CPTRGM(VARDATA(item), ptr);
|
|
}
|
|
d[i] = PointerGetDatum(item);
|
|
}
|
|
|
|
a = construct_array(d, ARRNELEM(trg), TEXTOID, -1, false, 'i');
|
|
|
|
for (i = 0; i < ARRNELEM(trg); i++)
|
|
pfree(DatumGetPointer(d[i]));
|
|
|
|
pfree(d);
|
|
pfree(trg);
|
|
PG_FREE_IF_COPY(in, 0);
|
|
|
|
PG_RETURN_POINTER(a);
|
|
}
|
|
|
|
float4 cnt_sml(TRGM* trg1, TRGM* trg2)
|
|
{
|
|
trgm *ptr1, *ptr2;
|
|
int count = 0;
|
|
int len1, len2;
|
|
|
|
ptr1 = GETARR(trg1);
|
|
ptr2 = GETARR(trg2);
|
|
|
|
len1 = ARRNELEM(trg1);
|
|
len2 = ARRNELEM(trg2);
|
|
|
|
/* explicit test is needed to avoid 0/0 division when both lengths are 0 */
|
|
if (len1 <= 0 || len2 <= 0)
|
|
return (float4)0.0;
|
|
|
|
while (ptr1 - GETARR(trg1) < len1 && ptr2 - GETARR(trg2) < len2) {
|
|
int res = CMPTRGM(ptr1, ptr2);
|
|
|
|
if (res < 0)
|
|
ptr1++;
|
|
else if (res > 0)
|
|
ptr2++;
|
|
else {
|
|
ptr1++;
|
|
ptr2++;
|
|
count++;
|
|
}
|
|
}
|
|
|
|
#ifdef DIVUNION
|
|
return ((float4)count) / ((float4)(len1 + len2 - count));
|
|
#else
|
|
return ((float4)count) / ((float4)((len1 > len2) ? len1 : len2));
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Returns whether trg2 contains all trigrams in trg1.
|
|
* This relies on the trigram arrays being sorted.
|
|
*/
|
|
bool trgm_contained_by(TRGM* trg1, TRGM* trg2)
|
|
{
|
|
trgm *ptr1, *ptr2;
|
|
int len1, len2;
|
|
|
|
ptr1 = GETARR(trg1);
|
|
ptr2 = GETARR(trg2);
|
|
|
|
len1 = ARRNELEM(trg1);
|
|
len2 = ARRNELEM(trg2);
|
|
|
|
while (ptr1 - GETARR(trg1) < len1 && ptr2 - GETARR(trg2) < len2) {
|
|
int res = CMPTRGM(ptr1, ptr2);
|
|
|
|
if (res < 0)
|
|
return false;
|
|
else if (res > 0)
|
|
ptr2++;
|
|
else {
|
|
ptr1++;
|
|
ptr2++;
|
|
}
|
|
}
|
|
if (ptr1 - GETARR(trg1) < len1)
|
|
return false;
|
|
else
|
|
return true;
|
|
}
|
|
|
|
Datum similarity(PG_FUNCTION_ARGS)
|
|
{
|
|
text* in1 = PG_GETARG_TEXT_P(0);
|
|
text* in2 = PG_GETARG_TEXT_P(1);
|
|
TRGM *trg1, *trg2;
|
|
float4 res;
|
|
|
|
trg1 = generate_trgm(VARDATA(in1), VARSIZE(in1) - VARHDRSZ);
|
|
trg2 = generate_trgm(VARDATA(in2), VARSIZE(in2) - VARHDRSZ);
|
|
|
|
res = cnt_sml(trg1, trg2);
|
|
|
|
pfree(trg1);
|
|
pfree(trg2);
|
|
PG_FREE_IF_COPY(in1, 0);
|
|
PG_FREE_IF_COPY(in2, 1);
|
|
|
|
PG_RETURN_FLOAT4(res);
|
|
}
|
|
|
|
Datum similarity_dist(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 res = DatumGetFloat4(DirectFunctionCall2(similarity, PG_GETARG_DATUM(0), PG_GETARG_DATUM(1)));
|
|
|
|
PG_RETURN_FLOAT4(1.0 - res);
|
|
}
|
|
|
|
Datum similarity_op(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 res = DatumGetFloat4(DirectFunctionCall2(similarity, PG_GETARG_DATUM(0), PG_GETARG_DATUM(1)));
|
|
|
|
PG_RETURN_BOOL(res >= trgm_limit);
|
|
}
|