1938 lines
65 KiB
C++
Executable File
1938 lines
65 KiB
C++
Executable File
/*-------------------------------------------------------------------------
|
|
*
|
|
* pg_stat_statements.c
|
|
* Track statement execution times across a whole database cluster.
|
|
*
|
|
* Execution costs are totalled for each distinct source query, and kept in
|
|
* a shared hashtable. (We track only as many distinct queries as will fit
|
|
* in the designated amount of shared memory.)
|
|
*
|
|
* As of Postgres 9.2, this module normalizes query entries. Normalization
|
|
* is a process whereby similar queries, typically differing only in their
|
|
* constants (though the exact rules are somewhat more subtle than that) are
|
|
* recognized as equivalent, and are tracked as a single entry. This is
|
|
* particularly useful for non-prepared queries.
|
|
*
|
|
* Normalization is implemented by fingerprinting queries, selectively
|
|
* serializing those fields of each query tree's nodes that are judged to be
|
|
* essential to the query. This is referred to as a query jumble. This is
|
|
* distinct from a regular serialization in that various extraneous
|
|
* information is ignored as irrelevant or not essential to the query, such
|
|
* as the collations of Vars and, most notably, the values of constants.
|
|
*
|
|
* This jumble is acquired at the end of parse analysis of each query, and
|
|
* a 32-bit hash of it is stored into the query's Query.queryId field.
|
|
* The server then copies this value around, making it available in plan
|
|
* tree(s) generated from the query. The executor can then use this value
|
|
* to blame query costs on the proper queryId.
|
|
*
|
|
* Note about locking issues: to create or delete an entry in the shared
|
|
* hashtable, one must hold pgss->lock exclusively. Modifying any field
|
|
* in an entry except the counters requires the same. To look up an entry,
|
|
* one must hold the lock shared. To read or update the counters within
|
|
* an entry, one must hold the lock shared or exclusive (so the entry doesn't
|
|
* disappear!) and also take the entry's mutex spinlock.
|
|
*
|
|
*
|
|
* Copyright (c) 2008-2012, PostgreSQL Global Development Group
|
|
*
|
|
* IDENTIFICATION
|
|
* contrib/pg_stat_statements/pg_stat_statements.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
#include "knl/knl_variable.h"
|
|
|
|
#include <unistd.h>
|
|
|
|
#include "access/hash.h"
|
|
#include "executor/instrument.h"
|
|
#include "funcapi.h"
|
|
#include "mb/pg_wchar.h"
|
|
#include "miscadmin.h"
|
|
#include "parser/analyze.h"
|
|
#include "parser/parsetree.h"
|
|
#include "parser/scanner.h"
|
|
#include "pgstat.h"
|
|
#include "storage/fd.h"
|
|
#include "storage/copydir.h"
|
|
#include "storage/ipc.h"
|
|
#include "storage/spin.h"
|
|
#include "tcop/utility.h"
|
|
#include "utils/builtins.h"
|
|
|
|
PG_MODULE_MAGIC;
|
|
|
|
/* Location of stats file */
|
|
#define PGSS_DUMP_FILE "global/pg_stat_statements.stat"
|
|
|
|
/* This constant defines the magic number in the stats file header */
|
|
static const uint32 PGSS_FILE_HEADER = 0x20120328;
|
|
|
|
/* XXX: Should USAGE_EXEC reflect execution time and/or buffer usage? */
|
|
#define USAGE_EXEC(duration) (1.0)
|
|
#define USAGE_INIT (1.0) /* including initial planning */
|
|
#define ASSUMED_MEDIAN_INIT (10.0) /* initial assumed median usage */
|
|
#define USAGE_DECREASE_FACTOR (0.99) /* decreased every entry_dealloc */
|
|
#define STICKY_DECREASE_FACTOR (0.50) /* factor for sticky entries */
|
|
#define USAGE_DEALLOC_PERCENT 5 /* free this % of entries at once */
|
|
|
|
#define JUMBLE_SIZE 1024 /* query serialization buffer size */
|
|
|
|
/*
|
|
* Hashtable key that defines the identity of a hashtable entry. We separate
|
|
* queries by user and by database even if they are otherwise identical.
|
|
*
|
|
* Presently, the query encoding is fully determined by the source database
|
|
* and so we don't really need it to be in the key. But that might not always
|
|
* be true. Anyway it's notationally convenient to pass it as part of the key.
|
|
*/
|
|
typedef struct pgssHashKey {
|
|
Oid userid; /* user OID */
|
|
Oid dbid; /* database OID */
|
|
int encoding; /* query encoding */
|
|
uint32 queryid; /* query identifier */
|
|
} pgssHashKey;
|
|
|
|
/*
|
|
* The actual stats counters kept within pgssEntry.
|
|
*/
|
|
typedef struct Counters {
|
|
int64 calls; /* # of times executed */
|
|
double total_time; /* total execution time, in msec */
|
|
int64 rows; /* total # of retrieved or affected rows */
|
|
int64 shared_blks_hit; /* # of shared buffer hits */
|
|
int64 shared_blks_read; /* # of shared disk blocks read */
|
|
int64 shared_blks_dirtied; /* # of shared disk blocks dirtied */
|
|
int64 shared_blks_written; /* # of shared disk blocks written */
|
|
int64 local_blks_hit; /* # of local buffer hits */
|
|
int64 local_blks_read; /* # of local disk blocks read */
|
|
int64 local_blks_dirtied; /* # of local disk blocks dirtied */
|
|
int64 local_blks_written; /* # of local disk blocks written */
|
|
int64 temp_blks_read; /* # of temp blocks read */
|
|
int64 temp_blks_written; /* # of temp blocks written */
|
|
double blk_read_time; /* time spent reading, in msec */
|
|
double blk_write_time; /* time spent writing, in msec */
|
|
double usage; /* usage factor */
|
|
} Counters;
|
|
|
|
/*
|
|
* Statistics per statement
|
|
*
|
|
* NB: see the file read/write code before changing field order here.
|
|
*/
|
|
typedef struct pgssEntry {
|
|
pgssHashKey key; /* hash key of entry - MUST BE FIRST */
|
|
Counters counters; /* the statistics for this query */
|
|
int query_len; /* # of valid bytes in query string */
|
|
slock_t mutex; /* protects the counters only */
|
|
char query[1]; /* VARIABLE LENGTH ARRAY - MUST BE LAST */
|
|
/* Note: the allocated length of query[] is actually pgss->query_size */
|
|
} pgssEntry;
|
|
|
|
/*
|
|
* Global shared state
|
|
*/
|
|
typedef struct pgssSharedState {
|
|
LWLockId lock; /* protects hashtable search/modification */
|
|
int query_size; /* max query length in bytes */
|
|
double cur_median_usage; /* current median usage in hashtable */
|
|
} pgssSharedState;
|
|
|
|
/*
|
|
* Struct for tracking locations/lengths of constants during normalization
|
|
*/
|
|
typedef struct pgssLocationLen {
|
|
int location; /* start offset in query text */
|
|
int length; /* length in bytes, or -1 to ignore */
|
|
} pgssLocationLen;
|
|
|
|
/*
|
|
* Working state for computing a query jumble and producing a normalized
|
|
* query string
|
|
*/
|
|
typedef struct pgssJumbleState {
|
|
/* Jumble of current query tree */
|
|
unsigned char* jumble;
|
|
|
|
/* Number of bytes used in jumble[] */
|
|
Size jumble_len;
|
|
|
|
/* Array of locations of constants that should be removed */
|
|
pgssLocationLen* clocations;
|
|
|
|
/* Allocated length of clocations array */
|
|
int clocations_buf_size;
|
|
|
|
/* Current number of valid entries in clocations array */
|
|
int clocations_count;
|
|
} pgssJumbleState;
|
|
|
|
/*---- Local variables ----*/
|
|
|
|
/* Current nesting depth of ExecutorRun+ProcessUtility calls */
|
|
static int nested_level = 0;
|
|
|
|
/* Saved hook values in case of unload */
|
|
static shmem_startup_hook_type prev_shmem_startup_hook = NULL;
|
|
static post_parse_analyze_hook_type prev_post_parse_analyze_hook = NULL;
|
|
static ExecutorStart_hook_type prev_ExecutorStart = NULL;
|
|
static ExecutorRun_hook_type prev_ExecutorRun = NULL;
|
|
static ExecutorFinish_hook_type prev_ExecutorFinish = NULL;
|
|
static ExecutorEnd_hook_type prev_ExecutorEnd = NULL;
|
|
static ProcessUtility_hook_type prev_ProcessUtility = NULL;
|
|
|
|
/* Links to shared memory state */
|
|
static pgssSharedState* pgss = NULL;
|
|
static HTAB* pgss_hash = NULL;
|
|
|
|
/*---- GUC variables ----*/
|
|
|
|
typedef enum {
|
|
PGSS_TRACK_NONE, /* track no statements */
|
|
PGSS_TRACK_TOP, /* only top level statements */
|
|
PGSS_TRACK_ALL /* all statements, including nested ones */
|
|
} PGSSTrackLevel;
|
|
|
|
static const struct config_enum_entry track_options[] = {
|
|
{"none", PGSS_TRACK_NONE, false}, {"top", PGSS_TRACK_TOP, false}, {"all", PGSS_TRACK_ALL, false}, {NULL, 0, false}};
|
|
|
|
static int pgss_max; /* max # statements to track */
|
|
static int pgss_track; /* tracking level */
|
|
static bool pgss_track_utility; /* whether to track utility commands */
|
|
static bool pgss_save; /* whether to save stats across shutdown */
|
|
|
|
#define pgss_enabled() (pgss_track == PGSS_TRACK_ALL || (pgss_track == PGSS_TRACK_TOP && nested_level == 0))
|
|
|
|
/*---- Function declarations ----*/
|
|
|
|
void _PG_init(void);
|
|
void _PG_fini(void);
|
|
|
|
Datum pg_stat_statements_reset(PG_FUNCTION_ARGS);
|
|
Datum pg_stat_statements(PG_FUNCTION_ARGS);
|
|
|
|
PG_FUNCTION_INFO_V1(pg_stat_statements_reset);
|
|
PG_FUNCTION_INFO_V1(pg_stat_statements);
|
|
|
|
static void pgss_shmem_startup(void);
|
|
static void pgss_shmem_shutdown(int code, Datum arg);
|
|
static void pgss_post_parse_analyze(ParseState* pstate, Query* query);
|
|
static void pgss_ExecutorStart(QueryDesc* queryDesc, int eflags);
|
|
static void pgss_ExecutorRun(QueryDesc* queryDesc, ScanDirection direction, long count);
|
|
static void pgss_ExecutorFinish(QueryDesc* queryDesc);
|
|
static void pgss_ExecutorEnd(QueryDesc* queryDesc);
|
|
static void pgss_ProcessUtility(Node* parsetree, const char* queryString, ParamListInfo params, bool isTopLevel,
|
|
DestReceiver* dest,
|
|
#ifdef PGXC
|
|
bool sentToRemote,
|
|
#endif /* PGXC */
|
|
char* completionTag);
|
|
static uint32 pgss_hash_fn(const void* key, Size keysize);
|
|
static int pgss_match_fn(const void* key1, const void* key2, Size keysize);
|
|
static uint32 pgss_hash_string(const char* str);
|
|
static void pgss_store(const char* query, uint32 queryId, double total_time, uint64 rows, const BufferUsage* bufusage,
|
|
pgssJumbleState* jstate);
|
|
static Size pgss_memsize(void);
|
|
static pgssEntry* entry_alloc(pgssHashKey* key, const char* query, int query_len, bool sticky);
|
|
static void entry_dealloc(void);
|
|
static void entry_reset(void);
|
|
static void AppendJumble(pgssJumbleState* jstate, const unsigned char* item, Size size);
|
|
static void JumbleQuery(pgssJumbleState* jstate, Query* query);
|
|
static void JumbleRangeTable(pgssJumbleState* jstate, List* rtable);
|
|
static void JumbleExpr(pgssJumbleState* jstate, Node* node);
|
|
static void RecordConstLocation(pgssJumbleState* jstate, int location);
|
|
static char* generate_normalized_query(pgssJumbleState* jstate, const char* query, int* query_len_p, int encoding);
|
|
static void fill_in_constant_lengths(pgssJumbleState* jstate, const char* query);
|
|
static int comp_location(const void* a, const void* b);
|
|
|
|
/*
|
|
* Module load callback
|
|
*/
|
|
void _PG_init(void)
|
|
{
|
|
/*
|
|
* In order to create our shared memory area, we have to be loaded via
|
|
* shared_preload_libraries. If not, fall out without hooking into any of
|
|
* the main system. (We don't throw error here because it seems useful to
|
|
* allow the pg_stat_statements functions to be created even when the
|
|
* module isn't active. The functions must protect themselves against
|
|
* being called then, however.)
|
|
*/
|
|
if (!process_shared_preload_libraries_in_progress)
|
|
return;
|
|
|
|
/*
|
|
* Define (or redefine) custom GUC variables.
|
|
*/
|
|
DefineCustomIntVariable("pg_stat_statements.max",
|
|
"Sets the maximum number of statements tracked by pg_stat_statements.",
|
|
NULL,
|
|
&pgss_max,
|
|
1000,
|
|
100,
|
|
INT_MAX,
|
|
PGC_POSTMASTER,
|
|
0,
|
|
NULL,
|
|
NULL,
|
|
NULL);
|
|
|
|
DefineCustomEnumVariable("pg_stat_statements.track",
|
|
"Selects which statements are tracked by pg_stat_statements.",
|
|
NULL,
|
|
&pgss_track,
|
|
PGSS_TRACK_TOP,
|
|
track_options,
|
|
PGC_SUSET,
|
|
0,
|
|
NULL,
|
|
NULL,
|
|
NULL);
|
|
|
|
DefineCustomBoolVariable("pg_stat_statements.track_utility",
|
|
"Selects whether utility commands are tracked by pg_stat_statements.",
|
|
NULL,
|
|
&pgss_track_utility,
|
|
true,
|
|
PGC_SUSET,
|
|
0,
|
|
NULL,
|
|
NULL,
|
|
NULL);
|
|
|
|
DefineCustomBoolVariable("pg_stat_statements.save",
|
|
"Save pg_stat_statements statistics across server shutdowns.",
|
|
NULL,
|
|
&pgss_save,
|
|
true,
|
|
PGC_SIGHUP,
|
|
0,
|
|
NULL,
|
|
NULL,
|
|
NULL);
|
|
|
|
EmitWarningsOnPlaceholders("pg_stat_statements");
|
|
|
|
/*
|
|
* Request additional shared resources. (These are no-ops if we're not in
|
|
* the postmaster process.) We'll allocate or attach to the shared
|
|
* resources in pgss_shmem_startup().
|
|
*/
|
|
RequestAddinShmemSpace(pgss_memsize());
|
|
RequestAddinLWLocks(1);
|
|
|
|
/*
|
|
* Install hooks.
|
|
*/
|
|
prev_shmem_startup_hook = t_thrd.storage_cxt.shmem_startup_hook;
|
|
t_thrd.storage_cxt.shmem_startup_hook = pgss_shmem_startup;
|
|
prev_post_parse_analyze_hook = post_parse_analyze_hook;
|
|
post_parse_analyze_hook = pgss_post_parse_analyze;
|
|
prev_ExecutorStart = ExecutorStart_hook;
|
|
ExecutorStart_hook = pgss_ExecutorStart;
|
|
prev_ExecutorRun = ExecutorRun_hook;
|
|
ExecutorRun_hook = pgss_ExecutorRun;
|
|
prev_ExecutorFinish = ExecutorFinish_hook;
|
|
ExecutorFinish_hook = pgss_ExecutorFinish;
|
|
prev_ExecutorEnd = ExecutorEnd_hook;
|
|
ExecutorEnd_hook = pgss_ExecutorEnd;
|
|
prev_ProcessUtility = ProcessUtility_hook;
|
|
ProcessUtility_hook = pgss_ProcessUtility;
|
|
}
|
|
|
|
/*
|
|
* Module unload callback
|
|
*/
|
|
void _PG_fini(void)
|
|
{
|
|
/* Uninstall hooks. */
|
|
t_thrd.storage_cxt.shmem_startup_hook = prev_shmem_startup_hook;
|
|
post_parse_analyze_hook = prev_post_parse_analyze_hook;
|
|
ExecutorStart_hook = prev_ExecutorStart;
|
|
ExecutorRun_hook = prev_ExecutorRun;
|
|
ExecutorFinish_hook = prev_ExecutorFinish;
|
|
ExecutorEnd_hook = prev_ExecutorEnd;
|
|
ProcessUtility_hook = prev_ProcessUtility;
|
|
}
|
|
|
|
/*
|
|
* shmem_startup hook: allocate or attach to shared memory,
|
|
* then load any pre-existing statistics from file.
|
|
*/
|
|
static void pgss_shmem_startup(void)
|
|
{
|
|
bool found = false;
|
|
HASHCTL info;
|
|
FILE* file = NULL;
|
|
uint32 header;
|
|
int32 num;
|
|
int32 i;
|
|
int query_size;
|
|
int buffer_size;
|
|
char* buffer = NULL;
|
|
|
|
if (prev_shmem_startup_hook)
|
|
prev_shmem_startup_hook();
|
|
|
|
/* reset in case this is a restart within the postmaster */
|
|
pgss = NULL;
|
|
pgss_hash = NULL;
|
|
|
|
/*
|
|
* Create or attach to the shared memory state, including hash table
|
|
*/
|
|
LWLockAcquire(AddinShmemInitLock, LW_EXCLUSIVE);
|
|
|
|
pgss = (pgssSharedState*)ShmemInitStruct("pg_stat_statements", sizeof(pgssSharedState), &found);
|
|
|
|
if (!found) {
|
|
/* First time through ... */
|
|
pgss->lock = LWLockAssign();
|
|
pgss->query_size = g_instance.attr.attr_common.pgstat_track_activity_query_size;
|
|
pgss->cur_median_usage = ASSUMED_MEDIAN_INIT;
|
|
}
|
|
|
|
/* Be sure everyone agrees on the hash table entry size */
|
|
query_size = pgss->query_size;
|
|
|
|
memset(&info, 0, sizeof(info));
|
|
info.keysize = sizeof(pgssHashKey);
|
|
info.entrysize = offsetof(pgssEntry, query) + query_size;
|
|
info.hash = pgss_hash_fn;
|
|
info.match = pgss_match_fn;
|
|
pgss_hash =
|
|
ShmemInitHash("pg_stat_statements hash", pgss_max, pgss_max, &info, HASH_ELEM | HASH_FUNCTION | HASH_COMPARE);
|
|
|
|
LWLockRelease(AddinShmemInitLock);
|
|
|
|
/*
|
|
* If we're in the postmaster (or a standalone backend...), set up a shmem
|
|
* exit hook to dump the statistics to disk.
|
|
*/
|
|
if (!IsUnderPostmaster)
|
|
on_shmem_exit(pgss_shmem_shutdown, (Datum)0);
|
|
|
|
/*
|
|
* Attempt to load old statistics from the dump file, if this is the first
|
|
* time through and we weren't told not to.
|
|
*/
|
|
if (found || !pgss_save)
|
|
return;
|
|
|
|
/*
|
|
* Note: we don't bother with locks here, because there should be no other
|
|
* processes running when this code is reached.
|
|
*/
|
|
file = AllocateFile(PGSS_DUMP_FILE, PG_BINARY_R);
|
|
if (file == NULL) {
|
|
if (errno == ENOENT)
|
|
return; /* ignore not-found error */
|
|
goto error;
|
|
}
|
|
|
|
buffer_size = query_size;
|
|
buffer = (char*)palloc(buffer_size);
|
|
|
|
if (fread(&header, sizeof(uint32), 1, file) != 1 || header != PGSS_FILE_HEADER ||
|
|
fread(&num, sizeof(int32), 1, file) != 1)
|
|
goto error;
|
|
|
|
for (i = 0; i < num; i++) {
|
|
pgssEntry temp;
|
|
pgssEntry* entry = NULL;
|
|
|
|
if (fread(&temp, offsetof(pgssEntry, mutex), 1, file) != 1)
|
|
goto error;
|
|
|
|
/* Encoding is the only field we can easily sanity-check */
|
|
if (!PG_VALID_BE_ENCODING(temp.key.encoding))
|
|
goto error;
|
|
|
|
/* Previous incarnation might have had a larger query_size */
|
|
if (temp.query_len >= buffer_size) {
|
|
buffer = (char*)repalloc(buffer, temp.query_len + 1);
|
|
buffer_size = temp.query_len + 1;
|
|
}
|
|
|
|
if (fread(buffer, 1, temp.query_len, file) != temp.query_len)
|
|
goto error;
|
|
buffer[temp.query_len] = '\0';
|
|
|
|
/* Skip loading "sticky" entries */
|
|
if (temp.counters.calls == 0)
|
|
continue;
|
|
|
|
/* Clip to available length if needed */
|
|
if (temp.query_len >= query_size)
|
|
temp.query_len = pg_encoding_mbcliplen(temp.key.encoding, buffer, temp.query_len, query_size - 1);
|
|
|
|
/* make the hashtable entry (discards old entries if too many) */
|
|
entry = entry_alloc(&temp.key, buffer, temp.query_len, false);
|
|
|
|
/* copy in the actual stats */
|
|
entry->counters = temp.counters;
|
|
}
|
|
|
|
pfree(buffer);
|
|
FreeFile(file);
|
|
|
|
/*
|
|
* Remove the file so it's not included in backups/replication slaves,
|
|
* etc. A new file will be written on next shutdown.
|
|
*/
|
|
unlink(PGSS_DUMP_FILE);
|
|
|
|
return;
|
|
|
|
error:
|
|
ereport(
|
|
LOG, (errcode_for_file_access(), errmsg("could not read pg_stat_statement file \"%s\": %m", PGSS_DUMP_FILE)));
|
|
if (buffer)
|
|
pfree(buffer);
|
|
if (file)
|
|
FreeFile(file);
|
|
/* If possible, throw away the bogus file; ignore any error */
|
|
unlink(PGSS_DUMP_FILE);
|
|
}
|
|
|
|
/*
|
|
* shmem_shutdown hook: Dump statistics into file.
|
|
*
|
|
* Note: we don't bother with acquiring lock, because there should be no
|
|
* other processes running when this is called.
|
|
*/
|
|
static void pgss_shmem_shutdown(int code, Datum arg)
|
|
{
|
|
FILE* file = NULL;
|
|
HASH_SEQ_STATUS hash_seq;
|
|
int32 num_entries;
|
|
pgssEntry* entry = NULL;
|
|
|
|
/* Don't try to dump during a crash. */
|
|
if (code)
|
|
return;
|
|
|
|
/* Safety check ... shouldn't get here unless shmem is set up. */
|
|
if (!pgss || !pgss_hash)
|
|
return;
|
|
|
|
/* Don't dump if told not to. */
|
|
if (!pgss_save)
|
|
return;
|
|
|
|
file = AllocateFile(PGSS_DUMP_FILE ".tmp", PG_BINARY_W);
|
|
if (file == NULL)
|
|
goto error;
|
|
|
|
if (fwrite(&PGSS_FILE_HEADER, sizeof(uint32), 1, file) != 1)
|
|
goto error;
|
|
num_entries = hash_get_num_entries(pgss_hash);
|
|
if (fwrite(&num_entries, sizeof(int32), 1, file) != 1)
|
|
goto error;
|
|
|
|
hash_seq_init(&hash_seq, pgss_hash);
|
|
while ((entry = (pgssEntry*)hash_seq_search(&hash_seq)) != NULL) {
|
|
int len = entry->query_len;
|
|
|
|
if (fwrite(entry, offsetof(pgssEntry, mutex), 1, file) != 1 || fwrite(entry->query, 1, len, file) != len)
|
|
goto error;
|
|
}
|
|
|
|
if (FreeFile(file)) {
|
|
file = NULL;
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Rename file into place, so we atomically replace the old one.
|
|
*/
|
|
(void)durable_rename(PGSS_DUMP_FILE ".tmp", PGSS_DUMP_FILE, LOG);
|
|
return;
|
|
|
|
error:
|
|
ereport(LOG,
|
|
(errcode_for_file_access(),
|
|
errmsg("could not write pg_stat_statement file \"%s\": %m", PGSS_DUMP_FILE ".tmp")));
|
|
if (file)
|
|
FreeFile(file);
|
|
unlink(PGSS_DUMP_FILE ".tmp");
|
|
}
|
|
|
|
/*
|
|
* Post-parse-analysis hook: mark query with a queryId
|
|
*/
|
|
static void pgss_post_parse_analyze(ParseState* pstate, Query* query)
|
|
{
|
|
pgssJumbleState jstate;
|
|
|
|
/* Assert we didn't do this already */
|
|
Assert(query->queryId == 0);
|
|
|
|
/* Safety check... */
|
|
if (!pgss || !pgss_hash)
|
|
return;
|
|
|
|
/*
|
|
* Utility statements get queryId zero. We do this even in cases where
|
|
* the statement contains an optimizable statement for which a queryId
|
|
* could be derived (such as EXPLAIN or DECLARE CURSOR). For such cases,
|
|
* runtime control will first go through ProcessUtility and then the
|
|
* executor, and we don't want the executor hooks to do anything, since we
|
|
* are already measuring the statement's costs at the utility level.
|
|
*/
|
|
if (query->utilityStmt) {
|
|
query->queryId = 0;
|
|
return;
|
|
}
|
|
|
|
/* Set up workspace for query jumbling */
|
|
jstate.jumble = (unsigned char*)palloc(JUMBLE_SIZE);
|
|
jstate.jumble_len = 0;
|
|
jstate.clocations_buf_size = 32;
|
|
jstate.clocations = (pgssLocationLen*)palloc(jstate.clocations_buf_size * sizeof(pgssLocationLen));
|
|
jstate.clocations_count = 0;
|
|
|
|
/* Compute query ID and mark the Query node with it */
|
|
JumbleQuery(&jstate, query);
|
|
query->queryId = hash_any(jstate.jumble, jstate.jumble_len);
|
|
|
|
/*
|
|
* If we are unlucky enough to get a hash of zero, use 1 instead, to
|
|
* prevent confusion with the utility-statement case.
|
|
*/
|
|
if (query->queryId == 0)
|
|
query->queryId = 1;
|
|
|
|
/*
|
|
* If we were able to identify any ignorable constants, we immediately
|
|
* create a hash table entry for the query, so that we can record the
|
|
* normalized form of the query string. If there were no such constants,
|
|
* the normalized string would be the same as the query text anyway, so
|
|
* there's no need for an early entry.
|
|
*/
|
|
if (jstate.clocations_count > 0)
|
|
pgss_store(pstate->p_sourcetext, query->queryId, 0, 0, NULL, &jstate);
|
|
}
|
|
|
|
/*
|
|
* ExecutorStart hook: start up tracking if needed
|
|
*/
|
|
static void pgss_ExecutorStart(QueryDesc* queryDesc, int eflags)
|
|
{
|
|
if (prev_ExecutorStart)
|
|
prev_ExecutorStart(queryDesc, eflags);
|
|
else
|
|
standard_ExecutorStart(queryDesc, eflags);
|
|
|
|
/*
|
|
* If query has queryId zero, don't track it. This prevents double
|
|
* counting of optimizable statements that are directly contained in
|
|
* utility statements.
|
|
*/
|
|
if (pgss_enabled() && queryDesc->plannedstmt->queryId != 0) {
|
|
/*
|
|
* Set up to track total elapsed time in ExecutorRun. Make sure the
|
|
* space is allocated in the per-query context so it will go away at
|
|
* ExecutorEnd.
|
|
*/
|
|
if (queryDesc->totaltime == NULL) {
|
|
MemoryContext oldcxt;
|
|
|
|
oldcxt = MemoryContextSwitchTo(queryDesc->estate->es_query_cxt);
|
|
queryDesc->totaltime = InstrAlloc(1, INSTRUMENT_ALL);
|
|
MemoryContextSwitchTo(oldcxt);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ExecutorRun hook: all we need do is track nesting depth
|
|
*/
|
|
static void pgss_ExecutorRun(QueryDesc* queryDesc, ScanDirection direction, long count)
|
|
{
|
|
nested_level++;
|
|
PG_TRY();
|
|
{
|
|
if (prev_ExecutorRun)
|
|
prev_ExecutorRun(queryDesc, direction, count);
|
|
else
|
|
standard_ExecutorRun(queryDesc, direction, count);
|
|
nested_level--;
|
|
}
|
|
PG_CATCH();
|
|
{
|
|
nested_level--;
|
|
PG_RE_THROW();
|
|
}
|
|
PG_END_TRY();
|
|
}
|
|
|
|
/*
|
|
* ExecutorFinish hook: all we need do is track nesting depth
|
|
*/
|
|
static void pgss_ExecutorFinish(QueryDesc* queryDesc)
|
|
{
|
|
nested_level++;
|
|
PG_TRY();
|
|
{
|
|
if (prev_ExecutorFinish)
|
|
prev_ExecutorFinish(queryDesc);
|
|
else
|
|
standard_ExecutorFinish(queryDesc);
|
|
nested_level--;
|
|
}
|
|
PG_CATCH();
|
|
{
|
|
nested_level--;
|
|
PG_RE_THROW();
|
|
}
|
|
PG_END_TRY();
|
|
}
|
|
|
|
/*
|
|
* ExecutorEnd hook: store results if needed
|
|
*/
|
|
static void pgss_ExecutorEnd(QueryDesc* queryDesc)
|
|
{
|
|
uint32 queryId = queryDesc->plannedstmt->queryId;
|
|
|
|
if (queryId != 0 && queryDesc->totaltime && pgss_enabled()) {
|
|
/*
|
|
* Make sure stats accumulation is done. (Note: it's okay if several
|
|
* levels of hook all do this.)
|
|
*/
|
|
InstrEndLoop(queryDesc->totaltime);
|
|
|
|
pgss_store(queryDesc->sourceText,
|
|
queryId,
|
|
queryDesc->totaltime->total * 1000.0, /* convert to msec */
|
|
queryDesc->estate->es_processed,
|
|
&queryDesc->totaltime->bufusage,
|
|
NULL);
|
|
}
|
|
|
|
if (prev_ExecutorEnd)
|
|
prev_ExecutorEnd(queryDesc);
|
|
else
|
|
standard_ExecutorEnd(queryDesc);
|
|
}
|
|
|
|
/*
|
|
* ProcessUtility hook
|
|
*/
|
|
static void pgss_ProcessUtility(Node* parsetree, const char* queryString, ParamListInfo params, bool isTopLevel,
|
|
DestReceiver* dest,
|
|
#ifdef PGXC
|
|
bool sentToRemote,
|
|
#endif /* PGXC */
|
|
char* completionTag)
|
|
{
|
|
/*
|
|
* If it's an EXECUTE statement, we don't track it and don't increment the
|
|
* nesting level. This allows the cycles to be charged to the underlying
|
|
* PREPARE instead (by the Executor hooks), which is much more useful.
|
|
*
|
|
* We also don't track execution of PREPARE. If we did, we would get one
|
|
* hash table entry for the PREPARE (with hash calculated from the query
|
|
* string), and then a different one with the same query string (but hash
|
|
* calculated from the query tree) would be used to accumulate costs of
|
|
* ensuing EXECUTEs. This would be confusing, and inconsistent with other
|
|
* cases where planning time is not included at all.
|
|
*/
|
|
if (pgss_track_utility && pgss_enabled() && !IsA(parsetree, ExecuteStmt) && !IsA(parsetree, PrepareStmt)) {
|
|
instr_time start;
|
|
instr_time duration;
|
|
uint64 rows = 0;
|
|
BufferUsage bufusage_start, bufusage;
|
|
uint32 queryId;
|
|
|
|
bufusage_start = u_sess->instr_cxt.pg_buffer_usage->INSTR_TIME_SET_CURRENT(start);
|
|
|
|
nested_level++;
|
|
PG_TRY();
|
|
{
|
|
if (prev_ProcessUtility)
|
|
prev_ProcessUtility(parsetree,
|
|
queryString,
|
|
params,
|
|
isTopLevel,
|
|
dest,
|
|
#ifdef PGXC
|
|
sentToRemote,
|
|
#endif /* PGXC */
|
|
completionTag);
|
|
else
|
|
standard_ProcessUtility(parsetree,
|
|
queryString,
|
|
params,
|
|
isTopLevel,
|
|
dest,
|
|
#ifdef PGXC
|
|
sentToRemote,
|
|
#endif /* PGXC */
|
|
completionTag);
|
|
nested_level--;
|
|
}
|
|
PG_CATCH();
|
|
{
|
|
nested_level--;
|
|
PG_RE_THROW();
|
|
}
|
|
PG_END_TRY();
|
|
|
|
INSTR_TIME_SET_CURRENT(duration);
|
|
INSTR_TIME_SUBTRACT(duration, start);
|
|
|
|
/* parse command tag to retrieve the number of affected rows. */
|
|
if (completionTag && sscanf(completionTag, "COPY " UINT64_FORMAT, &rows) != 1)
|
|
rows = 0;
|
|
|
|
/* calc differences of buffer counters. */
|
|
bufusage.shared_blks_hit = u_sess->instr_cxt.pg_buffer_usage->shared_blks_hit - bufusage_start.shared_blks_hit;
|
|
bufusage.shared_blks_read =
|
|
u_sess->instr_cxt.pg_buffer_usage->shared_blks_read - bufusage_start.shared_blks_read;
|
|
bufusage.shared_blks_dirtied =
|
|
u_sess->instr_cxt.pg_buffer_usage->shared_blks_dirtied - bufusage_start.shared_blks_dirtied;
|
|
bufusage.shared_blks_written =
|
|
u_sess->instr_cxt.pg_buffer_usage->shared_blks_written - bufusage_start.shared_blks_written;
|
|
bufusage.local_blks_hit = u_sess->instr_cxt.pg_buffer_usage->local_blks_hit - bufusage_start.local_blks_hit;
|
|
bufusage.local_blks_read = u_sess->instr_cxt.pg_buffer_usage->local_blks_read - bufusage_start.local_blks_read;
|
|
bufusage.local_blks_dirtied =
|
|
u_sess->instr_cxt.pg_buffer_usage->local_blks_dirtied - bufusage_start.local_blks_dirtied;
|
|
bufusage.local_blks_written =
|
|
u_sess->instr_cxt.pg_buffer_usage->local_blks_written - bufusage_start.local_blks_written;
|
|
bufusage.temp_blks_read = u_sess->instr_cxt.pg_buffer_usage->temp_blks_read - bufusage_start.temp_blks_read;
|
|
bufusage.temp_blks_written =
|
|
u_sess->instr_cxt.pg_buffer_usage->temp_blks_written - bufusage_start.temp_blks_written;
|
|
bufusage.blk_read_time = u_sess->instr_cxt.pg_buffer_usage->blk_read_time;
|
|
INSTR_TIME_SUBTRACT(bufusage.blk_read_time, bufusage_start.blk_read_time);
|
|
bufusage.blk_write_time = u_sess->instr_cxt.pg_buffer_usage->blk_write_time;
|
|
INSTR_TIME_SUBTRACT(bufusage.blk_write_time, bufusage_start.blk_write_time);
|
|
|
|
/* For utility statements, we just hash the query string directly */
|
|
queryId = pgss_hash_string(queryString);
|
|
|
|
pgss_store(queryString, queryId, INSTR_TIME_GET_MILLISEC(duration), rows, &bufusage, NULL);
|
|
} else {
|
|
if (prev_ProcessUtility)
|
|
prev_ProcessUtility(parsetree,
|
|
queryString,
|
|
params,
|
|
isTopLevel,
|
|
dest,
|
|
#ifdef PGXC
|
|
sentToRemote,
|
|
#endif /* PGXC */
|
|
completionTag);
|
|
else
|
|
standard_ProcessUtility(parsetree,
|
|
queryString,
|
|
params,
|
|
isTopLevel,
|
|
dest,
|
|
#ifdef PGXC
|
|
sentToRemote,
|
|
#endif /* PGXC */
|
|
completionTag);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Calculate hash value for a key
|
|
*/
|
|
static uint32 pgss_hash_fn(const void* key, Size keysize)
|
|
{
|
|
const pgssHashKey* k = (const pgssHashKey*)key;
|
|
|
|
/* we don't bother to include encoding in the hash */
|
|
return hash_uint32((uint32)k->userid) ^ hash_uint32((uint32)k->dbid) ^ hash_uint32((uint32)k->queryid);
|
|
}
|
|
|
|
/*
|
|
* Compare two keys - zero means match
|
|
*/
|
|
static int pgss_match_fn(const void* key1, const void* key2, Size keysize)
|
|
{
|
|
const pgssHashKey* k1 = (const pgssHashKey*)key1;
|
|
const pgssHashKey* k2 = (const pgssHashKey*)key2;
|
|
|
|
if (k1->userid == k2->userid && k1->dbid == k2->dbid && k1->encoding == k2->encoding && k1->queryid == k2->queryid)
|
|
return 0;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Given an arbitrarily long query string, produce a hash for the purposes of
|
|
* identifying the query, without normalizing constants. Used when hashing
|
|
* utility statements.
|
|
*/
|
|
static uint32 pgss_hash_string(const char* str)
|
|
{
|
|
return hash_any((const unsigned char*)str, strlen(str));
|
|
}
|
|
|
|
/*
|
|
* Store some statistics for a statement.
|
|
*
|
|
* If jstate is not NULL then we're trying to create an entry for which
|
|
* we have no statistics as yet; we just want to record the normalized
|
|
* query string. total_time, rows, bufusage are ignored in this case.
|
|
*/
|
|
static void pgss_store(const char* query, uint32 queryId, double total_time, uint64 rows, const BufferUsage* bufusage,
|
|
pgssJumbleState* jstate)
|
|
{
|
|
pgssHashKey key;
|
|
pgssEntry* entry = NULL;
|
|
char* norm_query = NULL;
|
|
|
|
Assert(query != NULL);
|
|
|
|
/* Safety check... */
|
|
if (!pgss || !pgss_hash)
|
|
return;
|
|
|
|
/* Set up key for hashtable search */
|
|
key.userid = GetUserId();
|
|
key.dbid = u_sess->proc_cxt.MyDatabaseId;
|
|
key.encoding = GetDatabaseEncoding();
|
|
key.queryid = queryId;
|
|
|
|
/* Lookup the hash table entry with shared lock. */
|
|
LWLockAcquire(pgss->lock, LW_SHARED);
|
|
|
|
entry = (pgssEntry*)hash_search(pgss_hash, &key, HASH_FIND, NULL);
|
|
|
|
/* Create new entry, if not present */
|
|
if (!entry) {
|
|
int query_len;
|
|
|
|
/*
|
|
* We'll need exclusive lock to make a new entry. There is no point
|
|
* in holding shared lock while we normalize the string, though.
|
|
*/
|
|
LWLockRelease(pgss->lock);
|
|
|
|
query_len = strlen(query);
|
|
|
|
if (jstate) {
|
|
/* Normalize the string if enabled */
|
|
norm_query = generate_normalized_query(jstate, query, &query_len, key.encoding);
|
|
|
|
/* Acquire exclusive lock as required by entry_alloc() */
|
|
LWLockAcquire(pgss->lock, LW_EXCLUSIVE);
|
|
|
|
entry = entry_alloc(&key, norm_query, query_len, true);
|
|
} else {
|
|
/*
|
|
* We're just going to store the query string as-is; but we have
|
|
* to truncate it if over-length.
|
|
*/
|
|
if (query_len >= pgss->query_size)
|
|
query_len = pg_encoding_mbcliplen(key.encoding, query, query_len, pgss->query_size - 1);
|
|
|
|
/* Acquire exclusive lock as required by entry_alloc() */
|
|
LWLockAcquire(pgss->lock, LW_EXCLUSIVE);
|
|
|
|
entry = entry_alloc(&key, query, query_len, false);
|
|
}
|
|
}
|
|
|
|
/* Increment the counts, except when jstate is not NULL */
|
|
if (!jstate) {
|
|
/*
|
|
* Grab the spinlock while updating the counters (see comment about
|
|
* locking rules at the head of the file)
|
|
*/
|
|
volatile pgssEntry* e = (volatile pgssEntry*)entry;
|
|
|
|
SpinLockAcquire(&e->mutex);
|
|
|
|
/* "Unstick" entry if it was previously sticky */
|
|
if (e->counters.calls == 0)
|
|
e->counters.usage = USAGE_INIT;
|
|
|
|
e->counters.calls += 1;
|
|
e->counters.total_time += total_time;
|
|
e->counters.rows += rows;
|
|
e->counters.shared_blks_hit += bufusage->shared_blks_hit;
|
|
e->counters.shared_blks_read += bufusage->shared_blks_read;
|
|
e->counters.shared_blks_dirtied += bufusage->shared_blks_dirtied;
|
|
e->counters.shared_blks_written += bufusage->shared_blks_written;
|
|
e->counters.local_blks_hit += bufusage->local_blks_hit;
|
|
e->counters.local_blks_read += bufusage->local_blks_read;
|
|
e->counters.local_blks_dirtied += bufusage->local_blks_dirtied;
|
|
e->counters.local_blks_written += bufusage->local_blks_written;
|
|
e->counters.temp_blks_read += bufusage->temp_blks_read;
|
|
e->counters.temp_blks_written += bufusage->temp_blks_written;
|
|
e->counters.blk_read_time += INSTR_TIME_GET_MILLISEC(bufusage->blk_read_time);
|
|
e->counters.blk_write_time += INSTR_TIME_GET_MILLISEC(bufusage->blk_write_time);
|
|
e->counters.usage += USAGE_EXEC(total_time);
|
|
|
|
SpinLockRelease(&e->mutex);
|
|
}
|
|
|
|
LWLockRelease(pgss->lock);
|
|
|
|
/* We postpone this pfree until we're out of the lock */
|
|
if (norm_query)
|
|
pfree(norm_query);
|
|
}
|
|
|
|
/*
|
|
* Reset all statement statistics.
|
|
*/
|
|
Datum pg_stat_statements_reset(PG_FUNCTION_ARGS)
|
|
{
|
|
if (!pgss || !pgss_hash)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("pg_stat_statements must be loaded via shared_preload_libraries")));
|
|
entry_reset();
|
|
PG_RETURN_VOID();
|
|
}
|
|
|
|
#define PG_STAT_STATEMENTS_COLS_V1_0 14
|
|
#define PG_STAT_STATEMENTS_COLS 18
|
|
|
|
/*
|
|
* Retrieve statement statistics.
|
|
*/
|
|
Datum pg_stat_statements(PG_FUNCTION_ARGS)
|
|
{
|
|
ReturnSetInfo* rsinfo = (ReturnSetInfo*)fcinfo->resultinfo;
|
|
TupleDesc tupdesc;
|
|
Tuplestorestate* tupstore = NULL;
|
|
MemoryContext per_query_ctx;
|
|
MemoryContext oldcontext;
|
|
Oid userid = GetUserId();
|
|
bool is_superuser = superuser();
|
|
HASH_SEQ_STATUS hash_seq;
|
|
pgssEntry* entry = NULL;
|
|
bool sql_supports_v1_1_counters = true;
|
|
|
|
if (!pgss || !pgss_hash)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("pg_stat_statements must be loaded via shared_preload_libraries")));
|
|
|
|
/* check to see if caller supports us returning a tuplestore */
|
|
if (rsinfo == NULL || !IsA(rsinfo, ReturnSetInfo))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("set-valued function called in context that cannot accept a set")));
|
|
if (!(rsinfo->allowedModes & SFRM_Materialize))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("materialize mode required, but it is not "
|
|
"allowed in this context")));
|
|
|
|
/* Build a tuple descriptor for our result type */
|
|
if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
|
|
elog(ERROR, "return type must be a row type");
|
|
if (tupdesc->natts == PG_STAT_STATEMENTS_COLS_V1_0)
|
|
sql_supports_v1_1_counters = false;
|
|
|
|
per_query_ctx = rsinfo->econtext->ecxt_per_query_memory;
|
|
oldcontext = MemoryContextSwitchTo(per_query_ctx);
|
|
|
|
tupstore = tuplestore_begin_heap(true, false, u_sess->attr.attr_memory.work_mem);
|
|
rsinfo->returnMode = SFRM_Materialize;
|
|
rsinfo->setResult = tupstore;
|
|
rsinfo->setDesc = tupdesc;
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
LWLockAcquire(pgss->lock, LW_SHARED);
|
|
|
|
hash_seq_init(&hash_seq, pgss_hash);
|
|
while ((entry = (pgssEntry*)hash_seq_search(&hash_seq)) != NULL) {
|
|
Datum values[PG_STAT_STATEMENTS_COLS];
|
|
bool nulls[PG_STAT_STATEMENTS_COLS];
|
|
int i = 0;
|
|
Counters tmp;
|
|
|
|
memset(values, 0, sizeof(values));
|
|
memset(nulls, 0, sizeof(nulls));
|
|
|
|
values[i++] = ObjectIdGetDatum(entry->key.userid);
|
|
values[i++] = ObjectIdGetDatum(entry->key.dbid);
|
|
|
|
if (is_superuser || entry->key.userid == userid) {
|
|
char* qstr = NULL;
|
|
|
|
qstr = (char*)pg_do_encoding_conversion(
|
|
(unsigned char*)entry->query, entry->query_len, entry->key.encoding, GetDatabaseEncoding());
|
|
values[i++] = CStringGetTextDatum(qstr);
|
|
if (qstr != entry->query)
|
|
pfree(qstr);
|
|
} else
|
|
values[i++] = CStringGetTextDatum("<insufficient privilege>");
|
|
|
|
/* copy counters to a local variable to keep locking time short */
|
|
{
|
|
pgssEntry* e = (pgssEntry*)entry;
|
|
|
|
SpinLockAcquire(&e->mutex);
|
|
tmp = e->counters;
|
|
SpinLockRelease(&e->mutex);
|
|
}
|
|
|
|
/* Skip entry if unexecuted (ie, it's a pending "sticky" entry) */
|
|
if (tmp.calls == 0)
|
|
continue;
|
|
|
|
values[i++] = Int64GetDatumFast(tmp.calls);
|
|
values[i++] = Float8GetDatumFast(tmp.total_time);
|
|
values[i++] = Int64GetDatumFast(tmp.rows);
|
|
values[i++] = Int64GetDatumFast(tmp.shared_blks_hit);
|
|
values[i++] = Int64GetDatumFast(tmp.shared_blks_read);
|
|
if (sql_supports_v1_1_counters)
|
|
values[i++] = Int64GetDatumFast(tmp.shared_blks_dirtied);
|
|
values[i++] = Int64GetDatumFast(tmp.shared_blks_written);
|
|
values[i++] = Int64GetDatumFast(tmp.local_blks_hit);
|
|
values[i++] = Int64GetDatumFast(tmp.local_blks_read);
|
|
if (sql_supports_v1_1_counters)
|
|
values[i++] = Int64GetDatumFast(tmp.local_blks_dirtied);
|
|
values[i++] = Int64GetDatumFast(tmp.local_blks_written);
|
|
values[i++] = Int64GetDatumFast(tmp.temp_blks_read);
|
|
values[i++] = Int64GetDatumFast(tmp.temp_blks_written);
|
|
if (sql_supports_v1_1_counters) {
|
|
values[i++] = Float8GetDatumFast(tmp.blk_read_time);
|
|
values[i++] = Float8GetDatumFast(tmp.blk_write_time);
|
|
}
|
|
|
|
Assert(i == (sql_supports_v1_1_counters ? PG_STAT_STATEMENTS_COLS : PG_STAT_STATEMENTS_COLS_V1_0));
|
|
|
|
tuplestore_putvalues(tupstore, tupdesc, values, nulls);
|
|
}
|
|
|
|
LWLockRelease(pgss->lock);
|
|
|
|
/* clean up and return the tuplestore */
|
|
tuplestore_donestoring(tupstore);
|
|
|
|
return (Datum)0;
|
|
}
|
|
|
|
/*
|
|
* Estimate shared memory space needed.
|
|
*/
|
|
static Size pgss_memsize(void)
|
|
{
|
|
Size size;
|
|
Size entrysize;
|
|
|
|
size = MAXALIGN(sizeof(pgssSharedState));
|
|
entrysize = offsetof(pgssEntry, query) + g_instance.attr.attr_common.pgstat_track_activity_query_size;
|
|
size = add_size(size, hash_estimate_size(pgss_max, entrysize));
|
|
|
|
return size;
|
|
}
|
|
|
|
/*
|
|
* Allocate a new hashtable entry.
|
|
* caller must hold an exclusive lock on pgss->lock
|
|
*
|
|
* "query" need not be null-terminated; we rely on query_len instead
|
|
*
|
|
* If "sticky" is true, make the new entry artificially sticky so that it will
|
|
* probably still be there when the query finishes execution. We do this by
|
|
* giving it a median usage value rather than the normal value. (Strictly
|
|
* speaking, query strings are normalized on a best effort basis, though it
|
|
* would be difficult to demonstrate this even under artificial conditions.)
|
|
*
|
|
* Note: despite needing exclusive lock, it's not an error for the target
|
|
* entry to already exist. This is because pgss_store releases and
|
|
* reacquires lock after failing to find a match; so someone else could
|
|
* have made the entry while we waited to get exclusive lock.
|
|
*/
|
|
static pgssEntry* entry_alloc(pgssHashKey* key, const char* query, int query_len, bool sticky)
|
|
{
|
|
pgssEntry* entry = NULL;
|
|
bool found = false;
|
|
|
|
/* Make space if needed */
|
|
while (hash_get_num_entries(pgss_hash) >= pgss_max)
|
|
entry_dealloc();
|
|
|
|
/* Find or create an entry with desired hash code */
|
|
entry = (pgssEntry*)hash_search(pgss_hash, key, HASH_ENTER, &found);
|
|
|
|
if (!found) {
|
|
/* New entry, initialize it */
|
|
|
|
/* reset the statistics */
|
|
memset(&entry->counters, 0, sizeof(Counters));
|
|
/* set the appropriate initial usage count */
|
|
entry->counters.usage = sticky ? pgss->cur_median_usage : USAGE_INIT;
|
|
/* re-initialize the mutex each time ... we assume no one using it */
|
|
SpinLockInit(&entry->mutex);
|
|
/* ... and don't forget the query text */
|
|
Assert(query_len >= 0 && query_len < pgss->query_size);
|
|
entry->query_len = query_len;
|
|
memcpy(entry->query, query, query_len);
|
|
entry->query[query_len] = '\0';
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
/*
|
|
* qsort comparator for sorting into increasing usage order
|
|
*/
|
|
static int entry_cmp(const void* lhs, const void* rhs)
|
|
{
|
|
double l_usage = (*(pgssEntry* const*)lhs)->counters.usage;
|
|
double r_usage = (*(pgssEntry* const*)rhs)->counters.usage;
|
|
|
|
if (l_usage < r_usage)
|
|
return -1;
|
|
else if (l_usage > r_usage)
|
|
return +1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Deallocate least used entries.
|
|
* Caller must hold an exclusive lock on pgss->lock.
|
|
*/
|
|
static void entry_dealloc(void)
|
|
{
|
|
HASH_SEQ_STATUS hash_seq;
|
|
pgssEntry** entries;
|
|
pgssEntry* entry = NULL;
|
|
int nvictims;
|
|
int i;
|
|
|
|
/*
|
|
* Sort entries by usage and deallocate USAGE_DEALLOC_PERCENT of them.
|
|
* While we're scanning the table, apply the decay factor to the usage
|
|
* values.
|
|
*/
|
|
|
|
entries = (pgssEntry**)palloc(hash_get_num_entries(pgss_hash) * sizeof(pgssEntry*));
|
|
|
|
i = 0;
|
|
hash_seq_init(&hash_seq, pgss_hash);
|
|
while ((entry = (pgssEntry*)hash_seq_search(&hash_seq)) != NULL) {
|
|
entries[i++] = entry;
|
|
/* "Sticky" entries get a different usage decay rate. */
|
|
if (entry->counters.calls == 0)
|
|
entry->counters.usage *= STICKY_DECREASE_FACTOR;
|
|
else
|
|
entry->counters.usage *= USAGE_DECREASE_FACTOR;
|
|
}
|
|
|
|
qsort(entries, i, sizeof(pgssEntry*), entry_cmp);
|
|
|
|
/* Also, record the (approximate) median usage */
|
|
if (i > 0)
|
|
pgss->cur_median_usage = entries[i / 2]->counters.usage;
|
|
|
|
nvictims = Max(10, i * USAGE_DEALLOC_PERCENT / 100);
|
|
nvictims = Min(nvictims, i);
|
|
|
|
for (i = 0; i < nvictims; i++) {
|
|
hash_search(pgss_hash, &entries[i]->key, HASH_REMOVE, NULL);
|
|
}
|
|
|
|
pfree(entries);
|
|
}
|
|
|
|
/*
|
|
* Release all entries.
|
|
*/
|
|
static void entry_reset(void)
|
|
{
|
|
HASH_SEQ_STATUS hash_seq;
|
|
pgssEntry* entry = NULL;
|
|
|
|
LWLockAcquire(pgss->lock, LW_EXCLUSIVE);
|
|
|
|
hash_seq_init(&hash_seq, pgss_hash);
|
|
while ((entry = (pgssEntry*)hash_seq_search(&hash_seq)) != NULL) {
|
|
hash_search(pgss_hash, &entry->key, HASH_REMOVE, NULL);
|
|
}
|
|
|
|
LWLockRelease(pgss->lock);
|
|
}
|
|
|
|
/*
|
|
* AppendJumble: Append a value that is substantive in a given query to
|
|
* the current jumble.
|
|
*/
|
|
static void AppendJumble(pgssJumbleState* jstate, const unsigned char* item, Size size)
|
|
{
|
|
unsigned char* jumble = jstate->jumble;
|
|
Size jumble_len = jstate->jumble_len;
|
|
|
|
/*
|
|
* Whenever the jumble buffer is full, we hash the current contents and
|
|
* reset the buffer to contain just that hash value, thus relying on the
|
|
* hash to summarize everything so far.
|
|
*/
|
|
while (size > 0) {
|
|
Size part_size;
|
|
|
|
if (jumble_len >= JUMBLE_SIZE) {
|
|
uint32 start_hash = hash_any(jumble, JUMBLE_SIZE);
|
|
|
|
memcpy(jumble, &start_hash, sizeof(start_hash));
|
|
jumble_len = sizeof(start_hash);
|
|
}
|
|
part_size = Min(size, JUMBLE_SIZE - jumble_len);
|
|
memcpy(jumble + jumble_len, item, part_size);
|
|
jumble_len += part_size;
|
|
item += part_size;
|
|
size -= part_size;
|
|
}
|
|
jstate->jumble_len = jumble_len;
|
|
}
|
|
|
|
/*
|
|
* Wrappers around AppendJumble to encapsulate details of serialization
|
|
* of individual local variable elements.
|
|
*/
|
|
#define APP_JUMB(item) AppendJumble(jstate, (const unsigned char*)&(item), sizeof(item))
|
|
#define APP_JUMB_STRING(str) AppendJumble(jstate, (const unsigned char*)(str), strlen(str) + 1)
|
|
|
|
/*
|
|
* JumbleQuery: Selectively serialize the query tree, appending significant
|
|
* data to the "query jumble" while ignoring nonsignificant data.
|
|
*
|
|
* Rule of thumb for what to include is that we should ignore anything not
|
|
* semantically significant (such as alias names) as well as anything that can
|
|
* be deduced from child nodes (else we'd just be double-hashing that piece
|
|
* of information).
|
|
*/
|
|
static void JumbleQuery(pgssJumbleState* jstate, Query* query)
|
|
{
|
|
Assert(IsA(query, Query));
|
|
Assert(query->utilityStmt == NULL);
|
|
|
|
APP_JUMB(query->commandType);
|
|
/* resultRelation is usually predictable from commandType */
|
|
JumbleExpr(jstate, (Node*)query->cteList);
|
|
JumbleRangeTable(jstate, query->rtable);
|
|
JumbleExpr(jstate, (Node*)query->jointree);
|
|
JumbleExpr(jstate, (Node*)query->targetList);
|
|
JumbleExpr(jstate, (Node*)query->returningList);
|
|
JumbleExpr(jstate, (Node*)query->groupClause);
|
|
JumbleExpr(jstate, (Node*)query->groupingSets);
|
|
JumbleExpr(jstate, query->havingQual);
|
|
JumbleExpr(jstate, (Node*)query->windowClause);
|
|
JumbleExpr(jstate, (Node*)query->distinctClause);
|
|
JumbleExpr(jstate, (Node*)query->sortClause);
|
|
JumbleExpr(jstate, query->limitOffset);
|
|
JumbleExpr(jstate, query->limitCount);
|
|
/* we ignore rowMarks */
|
|
JumbleExpr(jstate, query->setOperations);
|
|
}
|
|
|
|
/*
|
|
* Jumble a range table
|
|
*/
|
|
static void JumbleRangeTable(pgssJumbleState* jstate, List* rtable)
|
|
{
|
|
ListCell* lc = NULL;
|
|
|
|
foreach (lc, rtable) {
|
|
RangeTblEntry* rte = (RangeTblEntry*)lfirst(lc);
|
|
|
|
Assert(IsA(rte, RangeTblEntry));
|
|
APP_JUMB(rte->rtekind);
|
|
switch (rte->rtekind) {
|
|
case RTE_RELATION:
|
|
APP_JUMB(rte->relid);
|
|
break;
|
|
case RTE_SUBQUERY:
|
|
JumbleQuery(jstate, rte->subquery);
|
|
break;
|
|
case RTE_JOIN:
|
|
APP_JUMB(rte->jointype);
|
|
break;
|
|
case RTE_FUNCTION:
|
|
JumbleExpr(jstate, rte->funcexpr);
|
|
break;
|
|
case RTE_VALUES:
|
|
JumbleExpr(jstate, (Node*)rte->values_lists);
|
|
break;
|
|
case RTE_CTE:
|
|
|
|
/*
|
|
* Depending on the CTE name here isn't ideal, but it's the
|
|
* only info we have to identify the referenced WITH item.
|
|
*/
|
|
APP_JUMB_STRING(rte->ctename);
|
|
APP_JUMB(rte->ctelevelsup);
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized RTE kind: %d", (int)rte->rtekind);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Jumble an expression tree
|
|
*
|
|
* In general this function should handle all the same node types that
|
|
* expression_tree_walker() does, and therefore it's coded to be as parallel
|
|
* to that function as possible. However, since we are only invoked on
|
|
* queries immediately post-parse-analysis, we need not handle node types
|
|
* that only appear in planning.
|
|
*
|
|
* Note: the reason we don't simply use expression_tree_walker() is that the
|
|
* point of that function is to support tree walkers that don't care about
|
|
* most tree node types, but here we care about all types. We should complain
|
|
* about any unrecognized node type.
|
|
*/
|
|
static void JumbleExpr(pgssJumbleState* jstate, Node* node)
|
|
{
|
|
ListCell* temp = NULL;
|
|
|
|
if (node == NULL)
|
|
return;
|
|
|
|
/* Guard against stack overflow due to overly complex expressions */
|
|
check_stack_depth();
|
|
|
|
/*
|
|
* We always emit the node's NodeTag, then any additional fields that are
|
|
* considered significant, and then we recurse to any child nodes.
|
|
*/
|
|
APP_JUMB(node->type);
|
|
|
|
switch (nodeTag(node)) {
|
|
case T_Var: {
|
|
Var* var = (Var*)node;
|
|
|
|
APP_JUMB(var->varno);
|
|
APP_JUMB(var->varattno);
|
|
APP_JUMB(var->varlevelsup);
|
|
} break;
|
|
case T_Const: {
|
|
Const* c = (Const*)node;
|
|
|
|
/* We jumble only the constant's type, not its value */
|
|
APP_JUMB(c->consttype);
|
|
/* Also, record its parse location for query normalization */
|
|
RecordConstLocation(jstate, c->location);
|
|
} break;
|
|
case T_Param: {
|
|
Param* p = (Param*)node;
|
|
|
|
APP_JUMB(p->paramkind);
|
|
APP_JUMB(p->paramid);
|
|
APP_JUMB(p->paramtype);
|
|
} break;
|
|
case T_Aggref: {
|
|
Aggref* expr = (Aggref*)node;
|
|
|
|
APP_JUMB(expr->aggfnoid);
|
|
JumbleExpr(jstate, (Node*)expr->args);
|
|
JumbleExpr(jstate, (Node*)expr->aggorder);
|
|
JumbleExpr(jstate, (Node*)expr->aggdistinct);
|
|
} break;
|
|
case T_GroupingFunc: {
|
|
GroupingFunc* grpnode = (GroupingFunc*)node;
|
|
JumbleExpr(jstate, (Node*)grpnode->refs);
|
|
} break;
|
|
case T_WindowFunc: {
|
|
WindowFunc* expr = (WindowFunc*)node;
|
|
|
|
APP_JUMB(expr->winfnoid);
|
|
APP_JUMB(expr->winref);
|
|
JumbleExpr(jstate, (Node*)expr->args);
|
|
} break;
|
|
case T_InitList: {
|
|
foreach (temp, (List*)node) {
|
|
APP_JUMB(lfirst_int(temp));
|
|
}
|
|
}
|
|
case T_ArrayRef: {
|
|
ArrayRef* aref = (ArrayRef*)node;
|
|
|
|
JumbleExpr(jstate, (Node*)aref->refupperindexpr);
|
|
JumbleExpr(jstate, (Node*)aref->reflowerindexpr);
|
|
JumbleExpr(jstate, (Node*)aref->refexpr);
|
|
JumbleExpr(jstate, (Node*)aref->refassgnexpr);
|
|
} break;
|
|
case T_FuncExpr: {
|
|
FuncExpr* expr = (FuncExpr*)node;
|
|
|
|
APP_JUMB(expr->funcid);
|
|
JumbleExpr(jstate, (Node*)expr->args);
|
|
} break;
|
|
case T_NamedArgExpr: {
|
|
NamedArgExpr* nae = (NamedArgExpr*)node;
|
|
|
|
APP_JUMB(nae->argnumber);
|
|
JumbleExpr(jstate, (Node*)nae->arg);
|
|
} break;
|
|
case T_OpExpr:
|
|
case T_DistinctExpr: /* struct-equivalent to OpExpr */
|
|
case T_NullIfExpr: /* struct-equivalent to OpExpr */
|
|
{
|
|
OpExpr* expr = (OpExpr*)node;
|
|
|
|
APP_JUMB(expr->opno);
|
|
JumbleExpr(jstate, (Node*)expr->args);
|
|
} break;
|
|
case T_ScalarArrayOpExpr: {
|
|
ScalarArrayOpExpr* expr = (ScalarArrayOpExpr*)node;
|
|
|
|
APP_JUMB(expr->opno);
|
|
APP_JUMB(expr->useOr);
|
|
JumbleExpr(jstate, (Node*)expr->args);
|
|
} break;
|
|
case T_BoolExpr: {
|
|
BoolExpr* expr = (BoolExpr*)node;
|
|
|
|
APP_JUMB(expr->boolop);
|
|
JumbleExpr(jstate, (Node*)expr->args);
|
|
} break;
|
|
case T_SubLink: {
|
|
SubLink* sublink = (SubLink*)node;
|
|
|
|
APP_JUMB(sublink->subLinkType);
|
|
JumbleExpr(jstate, (Node*)sublink->testexpr);
|
|
JumbleQuery(jstate, (Query*)sublink->subselect);
|
|
} break;
|
|
case T_FieldSelect: {
|
|
FieldSelect* fs = (FieldSelect*)node;
|
|
|
|
APP_JUMB(fs->fieldnum);
|
|
JumbleExpr(jstate, (Node*)fs->arg);
|
|
} break;
|
|
case T_FieldStore: {
|
|
FieldStore* fstore = (FieldStore*)node;
|
|
|
|
JumbleExpr(jstate, (Node*)fstore->arg);
|
|
JumbleExpr(jstate, (Node*)fstore->newvals);
|
|
} break;
|
|
case T_RelabelType: {
|
|
RelabelType* rt = (RelabelType*)node;
|
|
|
|
APP_JUMB(rt->resulttype);
|
|
JumbleExpr(jstate, (Node*)rt->arg);
|
|
} break;
|
|
case T_CoerceViaIO: {
|
|
CoerceViaIO* cio = (CoerceViaIO*)node;
|
|
|
|
APP_JUMB(cio->resulttype);
|
|
JumbleExpr(jstate, (Node*)cio->arg);
|
|
} break;
|
|
case T_ArrayCoerceExpr: {
|
|
ArrayCoerceExpr* acexpr = (ArrayCoerceExpr*)node;
|
|
|
|
APP_JUMB(acexpr->resulttype);
|
|
JumbleExpr(jstate, (Node*)acexpr->arg);
|
|
} break;
|
|
case T_ConvertRowtypeExpr: {
|
|
ConvertRowtypeExpr* crexpr = (ConvertRowtypeExpr*)node;
|
|
|
|
APP_JUMB(crexpr->resulttype);
|
|
JumbleExpr(jstate, (Node*)crexpr->arg);
|
|
} break;
|
|
case T_CollateExpr: {
|
|
CollateExpr* ce = (CollateExpr*)node;
|
|
|
|
APP_JUMB(ce->collOid);
|
|
JumbleExpr(jstate, (Node*)ce->arg);
|
|
} break;
|
|
case T_CaseExpr: {
|
|
CaseExpr* caseexpr = (CaseExpr*)node;
|
|
|
|
JumbleExpr(jstate, (Node*)caseexpr->arg);
|
|
foreach (temp, caseexpr->args) {
|
|
CaseWhen* when = (CaseWhen*)lfirst(temp);
|
|
|
|
Assert(IsA(when, CaseWhen));
|
|
JumbleExpr(jstate, (Node*)when->expr);
|
|
JumbleExpr(jstate, (Node*)when->result);
|
|
}
|
|
JumbleExpr(jstate, (Node*)caseexpr->defresult);
|
|
} break;
|
|
case T_CaseTestExpr: {
|
|
CaseTestExpr* ct = (CaseTestExpr*)node;
|
|
|
|
APP_JUMB(ct->typeId);
|
|
} break;
|
|
case T_ArrayExpr:
|
|
JumbleExpr(jstate, (Node*)((ArrayExpr*)node)->elements);
|
|
break;
|
|
case T_RowExpr:
|
|
JumbleExpr(jstate, (Node*)((RowExpr*)node)->args);
|
|
break;
|
|
case T_RowCompareExpr: {
|
|
RowCompareExpr* rcexpr = (RowCompareExpr*)node;
|
|
|
|
APP_JUMB(rcexpr->rctype);
|
|
JumbleExpr(jstate, (Node*)rcexpr->largs);
|
|
JumbleExpr(jstate, (Node*)rcexpr->rargs);
|
|
} break;
|
|
case T_CoalesceExpr:
|
|
JumbleExpr(jstate, (Node*)((CoalesceExpr*)node)->args);
|
|
break;
|
|
case T_MinMaxExpr: {
|
|
MinMaxExpr* mmexpr = (MinMaxExpr*)node;
|
|
|
|
APP_JUMB(mmexpr->op);
|
|
JumbleExpr(jstate, (Node*)mmexpr->args);
|
|
} break;
|
|
case T_XmlExpr: {
|
|
XmlExpr* xexpr = (XmlExpr*)node;
|
|
|
|
APP_JUMB(xexpr->op);
|
|
JumbleExpr(jstate, (Node*)xexpr->named_args);
|
|
JumbleExpr(jstate, (Node*)xexpr->args);
|
|
} break;
|
|
case T_NullTest: {
|
|
NullTest* nt = (NullTest*)node;
|
|
|
|
APP_JUMB(nt->nulltesttype);
|
|
JumbleExpr(jstate, (Node*)nt->arg);
|
|
} break;
|
|
case T_BooleanTest: {
|
|
BooleanTest* bt = (BooleanTest*)node;
|
|
|
|
APP_JUMB(bt->booltesttype);
|
|
JumbleExpr(jstate, (Node*)bt->arg);
|
|
} break;
|
|
case T_CoerceToDomain: {
|
|
CoerceToDomain* cd = (CoerceToDomain*)node;
|
|
|
|
APP_JUMB(cd->resulttype);
|
|
JumbleExpr(jstate, (Node*)cd->arg);
|
|
} break;
|
|
case T_CoerceToDomainValue: {
|
|
CoerceToDomainValue* cdv = (CoerceToDomainValue*)node;
|
|
|
|
APP_JUMB(cdv->typeId);
|
|
} break;
|
|
case T_SetToDefault: {
|
|
SetToDefault* sd = (SetToDefault*)node;
|
|
|
|
APP_JUMB(sd->typeId);
|
|
} break;
|
|
case T_CurrentOfExpr: {
|
|
CurrentOfExpr* ce = (CurrentOfExpr*)node;
|
|
|
|
APP_JUMB(ce->cvarno);
|
|
if (ce->cursor_name)
|
|
APP_JUMB_STRING(ce->cursor_name);
|
|
APP_JUMB(ce->cursor_param);
|
|
} break;
|
|
case T_TargetEntry: {
|
|
TargetEntry* tle = (TargetEntry*)node;
|
|
|
|
APP_JUMB(tle->resno);
|
|
APP_JUMB(tle->ressortgroupref);
|
|
JumbleExpr(jstate, (Node*)tle->expr);
|
|
} break;
|
|
case T_RangeTblRef: {
|
|
RangeTblRef* rtr = (RangeTblRef*)node;
|
|
|
|
APP_JUMB(rtr->rtindex);
|
|
} break;
|
|
case T_JoinExpr: {
|
|
JoinExpr* join = (JoinExpr*)node;
|
|
|
|
APP_JUMB(join->jointype);
|
|
APP_JUMB(join->isNatural);
|
|
APP_JUMB(join->rtindex);
|
|
JumbleExpr(jstate, join->larg);
|
|
JumbleExpr(jstate, join->rarg);
|
|
JumbleExpr(jstate, join->quals);
|
|
} break;
|
|
case T_FromExpr: {
|
|
FromExpr* from = (FromExpr*)node;
|
|
|
|
JumbleExpr(jstate, (Node*)from->fromlist);
|
|
JumbleExpr(jstate, from->quals);
|
|
} break;
|
|
case T_List:
|
|
foreach (temp, (List*)node) {
|
|
JumbleExpr(jstate, (Node*)lfirst(temp));
|
|
}
|
|
break;
|
|
case T_SortGroupClause: {
|
|
SortGroupClause* sgc = (SortGroupClause*)node;
|
|
|
|
APP_JUMB(sgc->tleSortGroupRef);
|
|
APP_JUMB(sgc->eqop);
|
|
APP_JUMB(sgc->sortop);
|
|
APP_JUMB(sgc->nulls_first);
|
|
} break;
|
|
case T_GroupingSet: {
|
|
GroupingSet* gsnode = (GroupingSet*)node;
|
|
|
|
JumbleExpr(jstate, (Node*)gsnode->content);
|
|
}
|
|
case T_WindowClause: {
|
|
WindowClause* wc = (WindowClause*)node;
|
|
|
|
APP_JUMB(wc->winref);
|
|
APP_JUMB(wc->frameOptions);
|
|
JumbleExpr(jstate, (Node*)wc->partitionClause);
|
|
JumbleExpr(jstate, (Node*)wc->orderClause);
|
|
JumbleExpr(jstate, wc->startOffset);
|
|
JumbleExpr(jstate, wc->endOffset);
|
|
} break;
|
|
case T_CommonTableExpr: {
|
|
CommonTableExpr* cte = (CommonTableExpr*)node;
|
|
|
|
/* we store the string name because RTE_CTE RTEs need it */
|
|
APP_JUMB_STRING(cte->ctename);
|
|
JumbleQuery(jstate, (Query*)cte->ctequery);
|
|
} break;
|
|
case T_SetOperationStmt: {
|
|
SetOperationStmt* setop = (SetOperationStmt*)node;
|
|
|
|
APP_JUMB(setop->op);
|
|
APP_JUMB(setop->all);
|
|
JumbleExpr(jstate, setop->larg);
|
|
JumbleExpr(jstate, setop->rarg);
|
|
} break;
|
|
default:
|
|
/* Only a warning, since we can stumble along anyway */
|
|
elog(WARNING, "unrecognized node type: %d", (int)nodeTag(node));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Record location of constant within query string of query tree
|
|
* that is currently being walked.
|
|
*/
|
|
static void RecordConstLocation(pgssJumbleState* jstate, int location)
|
|
{
|
|
/* -1 indicates unknown or undefined location */
|
|
if (location >= 0) {
|
|
/* enlarge array if needed */
|
|
if (jstate->clocations_count >= jstate->clocations_buf_size) {
|
|
jstate->clocations_buf_size *= 2;
|
|
jstate->clocations =
|
|
(pgssLocationLen*)repalloc(jstate->clocations, jstate->clocations_buf_size * sizeof(pgssLocationLen));
|
|
}
|
|
jstate->clocations[jstate->clocations_count].location = location;
|
|
/* initialize lengths to -1 to simplify fill_in_constant_lengths */
|
|
jstate->clocations[jstate->clocations_count].length = -1;
|
|
jstate->clocations_count++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Generate a normalized version of the query string that will be used to
|
|
* represent all similar queries.
|
|
*
|
|
* Note that the normalized representation may well vary depending on
|
|
* just which "equivalent" query is used to create the hashtable entry.
|
|
* We assume this is OK.
|
|
*
|
|
* *query_len_p contains the input string length, and is updated with
|
|
* the result string length (which cannot be longer) on exit.
|
|
*
|
|
* Returns a palloc'd string, which is not necessarily null-terminated.
|
|
*/
|
|
static char* generate_normalized_query(pgssJumbleState* jstate, const char* query, int* query_len_p, int encoding)
|
|
{
|
|
char* norm_query = NULL;
|
|
int query_len = *query_len_p;
|
|
int max_output_len;
|
|
int i, len_to_wrt, /* Length (in bytes) to write */
|
|
quer_loc = 0, /* Source query byte location */
|
|
n_quer_loc = 0, /* Normalized query byte location */
|
|
last_off = 0, /* Offset from start for previous tok */
|
|
last_tok_len = 0; /* Length (in bytes) of that tok */
|
|
|
|
/*
|
|
* Get constants' lengths (core system only gives us locations). Note
|
|
* this also ensures the items are sorted by location.
|
|
*/
|
|
fill_in_constant_lengths(jstate, query);
|
|
|
|
/* Allocate result buffer, ensuring we limit result to allowed size */
|
|
max_output_len = Min(query_len, pgss->query_size - 1);
|
|
norm_query = (char*)palloc(max_output_len);
|
|
|
|
for (i = 0; i < jstate->clocations_count; i++) {
|
|
int off, /* Offset from start for cur tok */
|
|
tok_len; /* Length (in bytes) of that tok */
|
|
|
|
off = jstate->clocations[i].location;
|
|
tok_len = jstate->clocations[i].length;
|
|
|
|
if (tok_len < 0)
|
|
continue; /* ignore any duplicates */
|
|
|
|
/* Copy next chunk, or as much as will fit */
|
|
len_to_wrt = off - last_off;
|
|
len_to_wrt -= last_tok_len;
|
|
len_to_wrt = Min(len_to_wrt, max_output_len - n_quer_loc);
|
|
|
|
Assert(len_to_wrt >= 0);
|
|
memcpy(norm_query + n_quer_loc, query + quer_loc, len_to_wrt);
|
|
n_quer_loc += len_to_wrt;
|
|
|
|
if (n_quer_loc < max_output_len)
|
|
norm_query[n_quer_loc++] = '?';
|
|
|
|
quer_loc = off + tok_len;
|
|
last_off = off;
|
|
last_tok_len = tok_len;
|
|
|
|
/* If we run out of space, might as well stop iterating */
|
|
if (n_quer_loc >= max_output_len)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We've copied up until the last ignorable constant. Copy over the
|
|
* remaining bytes of the original query string, or at least as much as
|
|
* will fit.
|
|
*/
|
|
len_to_wrt = query_len - quer_loc;
|
|
len_to_wrt = Min(len_to_wrt, max_output_len - n_quer_loc);
|
|
|
|
Assert(len_to_wrt >= 0);
|
|
memcpy(norm_query + n_quer_loc, query + quer_loc, len_to_wrt);
|
|
n_quer_loc += len_to_wrt;
|
|
|
|
/*
|
|
* If we ran out of space, we need to do an encoding-aware truncation,
|
|
* just to make sure we don't have an incomplete character at the end.
|
|
*/
|
|
if (n_quer_loc >= max_output_len)
|
|
query_len = pg_encoding_mbcliplen(encoding, norm_query, n_quer_loc, pgss->query_size - 1);
|
|
else
|
|
query_len = n_quer_loc;
|
|
|
|
*query_len_p = query_len;
|
|
return norm_query;
|
|
}
|
|
|
|
/*
|
|
* Given a valid SQL string and an array of constant-location records,
|
|
* fill in the textual lengths of those constants.
|
|
*
|
|
* The constants may use any allowed constant syntax, such as float literals,
|
|
* bit-strings, single-quoted strings and dollar-quoted strings. This is
|
|
* accomplished by using the public API for the core scanner.
|
|
*
|
|
* It is the caller's job to ensure that the string is a valid SQL statement
|
|
* with constants at the indicated locations. Since in practice the string
|
|
* has already been parsed, and the locations that the caller provides will
|
|
* have originated from within the authoritative parser, this should not be
|
|
* a problem.
|
|
*
|
|
* Duplicate constant pointers are possible, and will have their lengths
|
|
* marked as '-1', so that they are later ignored. (Actually, we assume the
|
|
* lengths were initialized as -1 to start with, and don't change them here.)
|
|
*
|
|
* N.B. There is an assumption that a '-' character at a Const location begins
|
|
* a negative numeric constant. This precludes there ever being another
|
|
* reason for a constant to start with a '-'.
|
|
*/
|
|
static void fill_in_constant_lengths(pgssJumbleState* jstate, const char* query)
|
|
{
|
|
pgssLocationLen* locs = NULL;
|
|
core_yyscan_t yyscanner;
|
|
core_yy_extra_type yyextra;
|
|
core_YYSTYPE yylval;
|
|
YYLTYPE yylloc;
|
|
int last_loc = -1;
|
|
int i;
|
|
|
|
/*
|
|
* Sort the records by location so that we can process them in order while
|
|
* scanning the query text.
|
|
*/
|
|
if (jstate->clocations_count > 1)
|
|
qsort(jstate->clocations, jstate->clocations_count, sizeof(pgssLocationLen), comp_location);
|
|
locs = jstate->clocations;
|
|
|
|
/* initialize the flex scanner --- should match raw_parser() */
|
|
yyscanner = scanner_init(query, &yyextra, ScanKeywords, NumScanKeywords);
|
|
|
|
/* Search for each constant, in sequence */
|
|
for (i = 0; i < jstate->clocations_count; i++) {
|
|
int loc = locs[i].location;
|
|
int tok;
|
|
|
|
Assert(loc >= 0);
|
|
|
|
if (loc <= last_loc)
|
|
continue; /* Duplicate constant, ignore */
|
|
|
|
/* Lex tokens until we find the desired constant */
|
|
for (;;) {
|
|
tok = core_yylex(&yylval, &yylloc, yyscanner);
|
|
|
|
/* We should not hit end-of-string, but if we do, behave sanely */
|
|
if (tok == 0)
|
|
break; /* out of inner for-loop */
|
|
|
|
/*
|
|
* We should find the token position exactly, but if we somehow
|
|
* run past it, work with that.
|
|
*/
|
|
if (yylloc >= loc) {
|
|
if (query[loc] == '-') {
|
|
/*
|
|
* It's a negative value - this is the one and only case
|
|
* where we replace more than a single token.
|
|
*
|
|
* Do not compensate for the core system's special-case
|
|
* adjustment of location to that of the leading '-'
|
|
* operator in the event of a negative constant. It is
|
|
* also useful for our purposes to start from the minus
|
|
* symbol. In this way, queries like "select * from foo
|
|
* where bar = 1" and "select * from foo where bar = -2"
|
|
* will have identical normalized query strings.
|
|
*/
|
|
tok = core_yylex(&yylval, &yylloc, yyscanner);
|
|
if (tok == 0)
|
|
break; /* out of inner for-loop */
|
|
}
|
|
|
|
/*
|
|
* We now rely on the assumption that flex has placed a zero
|
|
* byte after the text of the current token in scanbuf.
|
|
*/
|
|
locs[i].length = strlen(yyextra.scanbuf + loc);
|
|
break; /* out of inner for-loop */
|
|
}
|
|
}
|
|
|
|
/* If we hit end-of-string, give up, leaving remaining lengths -1 */
|
|
if (tok == 0)
|
|
break;
|
|
|
|
last_loc = loc;
|
|
}
|
|
|
|
scanner_finish(yyscanner);
|
|
}
|
|
|
|
/*
|
|
* comp_location: comparator for qsorting pgssLocationLen structs by location
|
|
*/
|
|
static int comp_location(const void* a, const void* b)
|
|
{
|
|
int l = ((const pgssLocationLen*)a)->location;
|
|
int r = ((const pgssLocationLen*)b)->location;
|
|
|
|
if (l < r)
|
|
return -1;
|
|
else if (l > r)
|
|
return +1;
|
|
else
|
|
return 0;
|
|
}
|