1312 lines
34 KiB
C++
1312 lines
34 KiB
C++
/******************************************************************************
|
|
contrib/cube/cube.c
|
|
|
|
This file contains routines that can be bound to a Postgres backend and
|
|
called by the backend in the process of processing queries. The calling
|
|
format for these routines is dictated by Postgres architecture.
|
|
******************************************************************************/
|
|
|
|
#include "postgres.h"
|
|
#include "knl/knl_variable.h"
|
|
|
|
#include <float.h>
|
|
#include <math.h>
|
|
|
|
#include "access/gist.h"
|
|
#include "access/skey.h"
|
|
#include "utils/array.h"
|
|
#include "utils/builtins.h"
|
|
|
|
#include "cubedata.h"
|
|
|
|
PG_MODULE_MAGIC;
|
|
|
|
/*
|
|
* Taken from the intarray contrib header
|
|
*/
|
|
#define ARRPTR(x) ((double*)ARR_DATA_PTR(x))
|
|
#define ARRNELEMS(x) ArrayGetNItems(ARR_NDIM(x), ARR_DIMS(x))
|
|
|
|
extern int cube_yyparse(void*);
|
|
extern void cube_yyerror(const char* message);
|
|
extern void cube_scanner_init(const char* str);
|
|
extern void cube_scanner_finish(void);
|
|
|
|
/*
|
|
** Input/Output routines
|
|
*/
|
|
PG_FUNCTION_INFO_V1(cube_in);
|
|
PG_FUNCTION_INFO_V1(cube);
|
|
PG_FUNCTION_INFO_V1(cube_a_f8_f8);
|
|
PG_FUNCTION_INFO_V1(cube_a_f8);
|
|
PG_FUNCTION_INFO_V1(cube_out);
|
|
PG_FUNCTION_INFO_V1(cube_f8);
|
|
PG_FUNCTION_INFO_V1(cube_f8_f8);
|
|
PG_FUNCTION_INFO_V1(cube_c_f8);
|
|
PG_FUNCTION_INFO_V1(cube_c_f8_f8);
|
|
PG_FUNCTION_INFO_V1(cube_dim);
|
|
PG_FUNCTION_INFO_V1(cube_ll_coord);
|
|
PG_FUNCTION_INFO_V1(cube_ur_coord);
|
|
PG_FUNCTION_INFO_V1(cube_subset);
|
|
|
|
extern "C" Datum cube_in(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube_a_f8_f8(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube_a_f8(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube_out(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube_f8(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube_f8_f8(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube_c_f8(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube_c_f8_f8(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube_dim(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube_ll_coord(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube_ur_coord(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube_subset(PG_FUNCTION_ARGS);
|
|
|
|
/*
|
|
** GiST support methods
|
|
*/
|
|
|
|
PG_FUNCTION_INFO_V1(g_cube_consistent);
|
|
PG_FUNCTION_INFO_V1(g_cube_compress);
|
|
PG_FUNCTION_INFO_V1(g_cube_decompress);
|
|
PG_FUNCTION_INFO_V1(g_cube_penalty);
|
|
PG_FUNCTION_INFO_V1(g_cube_picksplit);
|
|
PG_FUNCTION_INFO_V1(g_cube_union);
|
|
PG_FUNCTION_INFO_V1(g_cube_same);
|
|
|
|
extern "C" Datum g_cube_consistent(PG_FUNCTION_ARGS);
|
|
extern "C" Datum g_cube_compress(PG_FUNCTION_ARGS);
|
|
extern "C" Datum g_cube_decompress(PG_FUNCTION_ARGS);
|
|
extern "C" Datum g_cube_penalty(PG_FUNCTION_ARGS);
|
|
extern "C" Datum g_cube_picksplit(PG_FUNCTION_ARGS);
|
|
extern "C" Datum g_cube_union(PG_FUNCTION_ARGS);
|
|
extern "C" Datum g_cube_same(PG_FUNCTION_ARGS);
|
|
|
|
/*
|
|
** B-tree support functions
|
|
*/
|
|
PG_FUNCTION_INFO_V1(cube_eq);
|
|
PG_FUNCTION_INFO_V1(cube_ne);
|
|
PG_FUNCTION_INFO_V1(cube_lt);
|
|
PG_FUNCTION_INFO_V1(cube_gt);
|
|
PG_FUNCTION_INFO_V1(cube_le);
|
|
PG_FUNCTION_INFO_V1(cube_ge);
|
|
PG_FUNCTION_INFO_V1(cube_cmp);
|
|
|
|
extern "C" Datum cube_eq(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube_ne(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube_lt(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube_gt(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube_le(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube_ge(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube_cmp(PG_FUNCTION_ARGS);
|
|
|
|
/*
|
|
** R-tree support functions
|
|
*/
|
|
|
|
PG_FUNCTION_INFO_V1(cube_contains);
|
|
PG_FUNCTION_INFO_V1(cube_contained);
|
|
PG_FUNCTION_INFO_V1(cube_overlap);
|
|
PG_FUNCTION_INFO_V1(cube_union);
|
|
PG_FUNCTION_INFO_V1(cube_inter);
|
|
PG_FUNCTION_INFO_V1(cube_size);
|
|
|
|
extern "C" Datum cube_contains(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube_contained(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube_overlap(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube_union(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube_inter(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube_size(PG_FUNCTION_ARGS);
|
|
|
|
/*
|
|
** miscellaneous
|
|
*/
|
|
PG_FUNCTION_INFO_V1(cube_distance);
|
|
PG_FUNCTION_INFO_V1(cube_is_point);
|
|
PG_FUNCTION_INFO_V1(cube_enlarge);
|
|
|
|
extern "C" Datum cube_distance(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube_is_point(PG_FUNCTION_ARGS);
|
|
extern "C" Datum cube_enlarge(PG_FUNCTION_ARGS);
|
|
|
|
/*
|
|
** For internal use only
|
|
*/
|
|
int32 cube_cmp_v0(NDBOX* a, NDBOX* b);
|
|
bool cube_contains_v0(NDBOX* a, NDBOX* b);
|
|
bool cube_overlap_v0(NDBOX* a, NDBOX* b);
|
|
NDBOX* cube_union_v0(NDBOX* a, NDBOX* b);
|
|
void rt_cube_size(NDBOX* a, double* sz);
|
|
NDBOX* g_cube_binary_union(NDBOX* r1, NDBOX* r2, int* sizep);
|
|
bool g_cube_leaf_consistent(NDBOX* key, NDBOX* query, StrategyNumber strategy);
|
|
bool g_cube_internal_consistent(NDBOX* key, NDBOX* query, StrategyNumber strategy);
|
|
|
|
/*
|
|
** Auxiliary funxtions
|
|
*/
|
|
static double distance_1D(double a1, double a2, double b1, double b2);
|
|
|
|
/*****************************************************************************
|
|
* Input/Output functions
|
|
*****************************************************************************/
|
|
|
|
/* NdBox = [(lowerleft),(upperright)] */
|
|
/* [(xLL(1)...xLL(N)),(xUR(1)...xUR(n))] */
|
|
Datum cube_in(PG_FUNCTION_ARGS)
|
|
{
|
|
char* str = PG_GETARG_CSTRING(0);
|
|
void* result = NULL;
|
|
|
|
cube_scanner_init(str);
|
|
|
|
if (cube_yyparse(&result) != 0)
|
|
cube_yyerror("bogus input");
|
|
|
|
cube_scanner_finish();
|
|
|
|
PG_RETURN_NDBOX(result);
|
|
}
|
|
|
|
/*
|
|
** Allows the construction of a cube from 2 float[]'s
|
|
*/
|
|
Datum cube_a_f8_f8(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType* ur = PG_GETARG_ARRAYTYPE_P(0);
|
|
ArrayType* ll = PG_GETARG_ARRAYTYPE_P(1);
|
|
NDBOX* result = NULL;
|
|
int i;
|
|
int dim;
|
|
int size;
|
|
double *dur = NULL;
|
|
double *dll = NULL;
|
|
|
|
if (array_contains_nulls(ur) || array_contains_nulls(ll))
|
|
ereport(ERROR, (errcode(ERRCODE_ARRAY_ELEMENT_ERROR), errmsg("cannot work with arrays containing NULLs")));
|
|
|
|
dim = ARRNELEMS(ur);
|
|
if (ARRNELEMS(ll) != dim)
|
|
ereport(ERROR, (errcode(ERRCODE_ARRAY_ELEMENT_ERROR), errmsg("UR and LL arrays must be of same length")));
|
|
|
|
dur = ARRPTR(ur);
|
|
dll = ARRPTR(ll);
|
|
|
|
size = offsetof(NDBOX, x[0]) + sizeof(double) * 2 * dim;
|
|
result = (NDBOX*)palloc0(size);
|
|
SET_VARSIZE(result, size);
|
|
result->dim = dim;
|
|
|
|
for (i = 0; i < dim; i++) {
|
|
result->x[i] = dur[i];
|
|
result->x[i + dim] = dll[i];
|
|
}
|
|
|
|
PG_RETURN_NDBOX(result);
|
|
}
|
|
|
|
/*
|
|
** Allows the construction of a zero-volume cube from a float[]
|
|
*/
|
|
Datum cube_a_f8(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType* ur = PG_GETARG_ARRAYTYPE_P(0);
|
|
NDBOX* result = NULL;
|
|
int i;
|
|
int dim;
|
|
int size;
|
|
double* dur = NULL;
|
|
|
|
if (array_contains_nulls(ur))
|
|
ereport(ERROR, (errcode(ERRCODE_ARRAY_ELEMENT_ERROR), errmsg("cannot work with arrays containing NULLs")));
|
|
|
|
dim = ARRNELEMS(ur);
|
|
|
|
dur = ARRPTR(ur);
|
|
|
|
size = offsetof(NDBOX, x[0]) + sizeof(double) * 2 * dim;
|
|
result = (NDBOX*)palloc0(size);
|
|
SET_VARSIZE(result, size);
|
|
result->dim = dim;
|
|
|
|
for (i = 0; i < dim; i++) {
|
|
result->x[i] = dur[i];
|
|
result->x[i + dim] = dur[i];
|
|
}
|
|
|
|
PG_RETURN_NDBOX(result);
|
|
}
|
|
|
|
Datum cube_subset(PG_FUNCTION_ARGS)
|
|
{
|
|
NDBOX* c = PG_GETARG_NDBOX(0);
|
|
ArrayType* idx = PG_GETARG_ARRAYTYPE_P(1);
|
|
NDBOX* result = NULL;
|
|
int size, dim, i;
|
|
int* dx = NULL;
|
|
|
|
if (array_contains_nulls(idx))
|
|
ereport(ERROR, (errcode(ERRCODE_ARRAY_ELEMENT_ERROR), errmsg("cannot work with arrays containing NULLs")));
|
|
|
|
dx = (int4*)ARR_DATA_PTR(idx);
|
|
|
|
dim = ARRNELEMS(idx);
|
|
size = offsetof(NDBOX, x[0]) + sizeof(double) * 2 * dim;
|
|
result = (NDBOX*)palloc0(size);
|
|
SET_VARSIZE(result, size);
|
|
result->dim = dim;
|
|
|
|
for (i = 0; i < dim; i++) {
|
|
if ((dx[i] <= 0) || (dx[i] > c->dim)) {
|
|
pfree(result);
|
|
ereport(ERROR, (errcode(ERRCODE_ARRAY_ELEMENT_ERROR), errmsg("Index out of bounds")));
|
|
}
|
|
result->x[i] = c->x[dx[i] - 1];
|
|
result->x[i + dim] = c->x[dx[i] + c->dim - 1];
|
|
}
|
|
|
|
PG_FREE_IF_COPY(c, 0);
|
|
PG_RETURN_NDBOX(result);
|
|
}
|
|
|
|
Datum cube_out(PG_FUNCTION_ARGS)
|
|
{
|
|
NDBOX* cube = PG_GETARG_NDBOX(0);
|
|
StringInfoData buf;
|
|
int dim = cube->dim;
|
|
bool equal = true;
|
|
int i;
|
|
int ndig;
|
|
|
|
initStringInfo(&buf);
|
|
|
|
/*
|
|
* Get the number of digits to display.
|
|
*/
|
|
ndig = DBL_DIG + u_sess->attr.attr_common.extra_float_digits;
|
|
if (ndig < 1)
|
|
ndig = 1;
|
|
|
|
/*
|
|
* while printing the first (LL) corner, check if it is equal to the
|
|
* second one
|
|
*/
|
|
appendStringInfoChar(&buf, '(');
|
|
for (i = 0; i < dim; i++) {
|
|
if (i > 0)
|
|
appendStringInfo(&buf, ", ");
|
|
appendStringInfo(&buf, "%.*g", ndig, cube->x[i]);
|
|
if (cube->x[i] != cube->x[i + dim]) {
|
|
equal = false;
|
|
}
|
|
}
|
|
appendStringInfoChar(&buf, ')');
|
|
|
|
if (!equal) {
|
|
appendStringInfo(&buf, ",(");
|
|
for (i = 0; i < dim; i++) {
|
|
if (i > 0)
|
|
appendStringInfo(&buf, ", ");
|
|
appendStringInfo(&buf, "%.*g", ndig, cube->x[i + dim]);
|
|
}
|
|
appendStringInfoChar(&buf, ')');
|
|
}
|
|
|
|
PG_FREE_IF_COPY(cube, 0);
|
|
PG_RETURN_CSTRING(buf.data);
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* GiST functions
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
** The GiST Consistent method for boxes
|
|
** Should return false if for all data items x below entry,
|
|
** the predicate x op query == FALSE, where op is the oper
|
|
** corresponding to strategy in the pg_amop table.
|
|
*/
|
|
Datum g_cube_consistent(PG_FUNCTION_ARGS)
|
|
{
|
|
GISTENTRY* entry = (GISTENTRY*)PG_GETARG_POINTER(0);
|
|
NDBOX* query = PG_GETARG_NDBOX(1);
|
|
StrategyNumber strategy = (StrategyNumber)PG_GETARG_UINT16(2);
|
|
|
|
bool* recheck = (bool*)PG_GETARG_POINTER(4);
|
|
bool res = false;
|
|
|
|
/* All cases served by this function are exact */
|
|
*recheck = false;
|
|
|
|
/*
|
|
* if entry is not leaf, use g_cube_internal_consistent, else use
|
|
* g_cube_leaf_consistent
|
|
*/
|
|
if (GIST_LEAF(entry))
|
|
res = g_cube_leaf_consistent(DatumGetNDBOX(entry->key), query, strategy);
|
|
else
|
|
res = g_cube_internal_consistent(DatumGetNDBOX(entry->key), query, strategy);
|
|
|
|
PG_FREE_IF_COPY(query, 1);
|
|
PG_RETURN_BOOL(res);
|
|
}
|
|
|
|
/*
|
|
** The GiST Union method for boxes
|
|
** returns the minimal bounding box that encloses all the entries in entryvec
|
|
*/
|
|
Datum g_cube_union(PG_FUNCTION_ARGS)
|
|
{
|
|
GistEntryVector* entryvec = (GistEntryVector*)PG_GETARG_POINTER(0);
|
|
int* sizep = (int*)PG_GETARG_POINTER(1);
|
|
NDBOX* out = (NDBOX*)NULL;
|
|
NDBOX* tmp = NULL;
|
|
int i;
|
|
|
|
/*
|
|
* fprintf(stderr, "union\n");
|
|
*/
|
|
tmp = DatumGetNDBOX(entryvec->vector[0].key);
|
|
|
|
/*
|
|
* sizep = sizeof(NDBOX); -- NDBOX has variable size
|
|
*/
|
|
*sizep = VARSIZE(tmp);
|
|
|
|
for (i = 1; i < entryvec->n; i++) {
|
|
out = g_cube_binary_union(tmp, DatumGetNDBOX(entryvec->vector[i].key), sizep);
|
|
tmp = out;
|
|
}
|
|
|
|
PG_RETURN_POINTER(out);
|
|
}
|
|
|
|
/*
|
|
** GiST Compress and Decompress methods for boxes
|
|
** do not do anything.
|
|
*/
|
|
|
|
Datum g_cube_compress(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_DATUM(PG_GETARG_DATUM(0));
|
|
}
|
|
|
|
Datum g_cube_decompress(PG_FUNCTION_ARGS)
|
|
{
|
|
GISTENTRY* entry = (GISTENTRY*)PG_GETARG_POINTER(0);
|
|
NDBOX* key = DatumGetNDBOX(PG_DETOAST_DATUM(entry->key));
|
|
|
|
if (key != DatumGetNDBOX(entry->key)) {
|
|
GISTENTRY* retval = (GISTENTRY*)palloc(sizeof(GISTENTRY));
|
|
|
|
gistentryinit(*retval, PointerGetDatum(key), entry->rel, entry->page, entry->offset, FALSE);
|
|
PG_RETURN_POINTER(retval);
|
|
}
|
|
PG_RETURN_POINTER(entry);
|
|
}
|
|
|
|
/*
|
|
** The GiST Penalty method for boxes
|
|
** As in the R-tree paper, we use change in area as our penalty metric
|
|
*/
|
|
Datum g_cube_penalty(PG_FUNCTION_ARGS)
|
|
{
|
|
GISTENTRY* origentry = (GISTENTRY*)PG_GETARG_POINTER(0);
|
|
GISTENTRY* newentry = (GISTENTRY*)PG_GETARG_POINTER(1);
|
|
float* result = (float*)PG_GETARG_POINTER(2);
|
|
NDBOX* ud = NULL;
|
|
double tmp1, tmp2;
|
|
|
|
ud = cube_union_v0(DatumGetNDBOX(origentry->key), DatumGetNDBOX(newentry->key));
|
|
rt_cube_size(ud, &tmp1);
|
|
rt_cube_size(DatumGetNDBOX(origentry->key), &tmp2);
|
|
*result = (float)(tmp1 - tmp2);
|
|
|
|
/*
|
|
* fprintf(stderr, "penalty\n"); fprintf(stderr, "\t%g\n", *result);
|
|
*/
|
|
PG_RETURN_FLOAT8(*result);
|
|
}
|
|
|
|
/*
|
|
** The GiST PickSplit method for boxes
|
|
** We use Guttman's poly time split algorithm
|
|
*/
|
|
Datum g_cube_picksplit(PG_FUNCTION_ARGS)
|
|
{
|
|
GistEntryVector* entryvec = (GistEntryVector*)PG_GETARG_POINTER(0);
|
|
GIST_SPLITVEC* v = (GIST_SPLITVEC*)PG_GETARG_POINTER(1);
|
|
OffsetNumber i, j;
|
|
NDBOX* datum_alpha = NULL;
|
|
NDBOX* datum_beta = NULL;
|
|
NDBOX* datum_l = NULL;
|
|
NDBOX* datum_r = NULL;
|
|
NDBOX* union_d = NULL;
|
|
NDBOX* union_dl = NULL;
|
|
NDBOX* union_dr = NULL;
|
|
NDBOX* inter_d = NULL;
|
|
bool firsttime = false;
|
|
double size_alpha, size_beta, size_union, size_inter;
|
|
double size_waste, waste;
|
|
double size_l, size_r;
|
|
int nbytes;
|
|
OffsetNumber seed_1 = 1, seed_2 = 2;
|
|
OffsetNumber* left = NULL;
|
|
OffsetNumber* right = NULL;
|
|
OffsetNumber maxoff;
|
|
|
|
/*
|
|
* fprintf(stderr, "picksplit\n");
|
|
*/
|
|
maxoff = entryvec->n - 2;
|
|
nbytes = (maxoff + 2) * sizeof(OffsetNumber);
|
|
v->spl_left = (OffsetNumber*)palloc(nbytes);
|
|
v->spl_right = (OffsetNumber*)palloc(nbytes);
|
|
|
|
firsttime = true;
|
|
waste = 0.0;
|
|
|
|
for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i)) {
|
|
datum_alpha = DatumGetNDBOX(entryvec->vector[i].key);
|
|
for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j)) {
|
|
datum_beta = DatumGetNDBOX(entryvec->vector[j].key);
|
|
|
|
/* compute the wasted space by unioning these guys */
|
|
union_d = cube_union_v0(datum_alpha, datum_beta);
|
|
rt_cube_size(union_d, &size_union);
|
|
inter_d = DatumGetNDBOX(DirectFunctionCall2(cube_inter, entryvec->vector[i].key, entryvec->vector[j].key));
|
|
rt_cube_size(inter_d, &size_inter);
|
|
size_waste = size_union - size_inter;
|
|
|
|
/*
|
|
* are these a more promising split than what we've already seen?
|
|
*/
|
|
|
|
if (size_waste > waste || firsttime) {
|
|
waste = size_waste;
|
|
seed_1 = i;
|
|
seed_2 = j;
|
|
firsttime = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
left = v->spl_left;
|
|
v->spl_nleft = 0;
|
|
right = v->spl_right;
|
|
v->spl_nright = 0;
|
|
|
|
datum_alpha = DatumGetNDBOX(entryvec->vector[seed_1].key);
|
|
datum_l = cube_union_v0(datum_alpha, datum_alpha);
|
|
rt_cube_size(datum_l, &size_l);
|
|
datum_beta = DatumGetNDBOX(entryvec->vector[seed_2].key);
|
|
datum_r = cube_union_v0(datum_beta, datum_beta);
|
|
rt_cube_size(datum_r, &size_r);
|
|
|
|
/*
|
|
* Now split up the regions between the two seeds. An important property
|
|
* of this split algorithm is that the split vector v has the indices of
|
|
* items to be split in order in its left and right vectors. We exploit
|
|
* this property by doing a merge in the code that actually splits the
|
|
* page.
|
|
*
|
|
* For efficiency, we also place the new index tuple in this loop. This is
|
|
* handled at the very end, when we have placed all the existing tuples
|
|
* and i == maxoff + 1.
|
|
*/
|
|
|
|
maxoff = OffsetNumberNext(maxoff);
|
|
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i)) {
|
|
/*
|
|
* If we've already decided where to place this item, just put it on
|
|
* the right list. Otherwise, we need to figure out which page needs
|
|
* the least enlargement in order to store the item.
|
|
*/
|
|
|
|
if (i == seed_1) {
|
|
*left++ = i;
|
|
v->spl_nleft++;
|
|
continue;
|
|
} else if (i == seed_2) {
|
|
*right++ = i;
|
|
v->spl_nright++;
|
|
continue;
|
|
}
|
|
|
|
/* okay, which page needs least enlargement? */
|
|
datum_alpha = DatumGetNDBOX(entryvec->vector[i].key);
|
|
union_dl = cube_union_v0(datum_l, datum_alpha);
|
|
union_dr = cube_union_v0(datum_r, datum_alpha);
|
|
rt_cube_size(union_dl, &size_alpha);
|
|
rt_cube_size(union_dr, &size_beta);
|
|
|
|
/* pick which page to add it to */
|
|
if (size_alpha - size_l < size_beta - size_r) {
|
|
datum_l = union_dl;
|
|
size_l = size_alpha;
|
|
*left++ = i;
|
|
v->spl_nleft++;
|
|
} else {
|
|
datum_r = union_dr;
|
|
size_r = size_beta;
|
|
*right++ = i;
|
|
v->spl_nright++;
|
|
}
|
|
}
|
|
*left = *right = FirstOffsetNumber; /* sentinel value, see dosplit() */
|
|
|
|
v->spl_ldatum = PointerGetDatum(datum_l);
|
|
v->spl_rdatum = PointerGetDatum(datum_r);
|
|
|
|
PG_RETURN_POINTER(v);
|
|
}
|
|
|
|
/*
|
|
** Equality method
|
|
*/
|
|
Datum g_cube_same(PG_FUNCTION_ARGS)
|
|
{
|
|
NDBOX* b1 = PG_GETARG_NDBOX(0);
|
|
NDBOX* b2 = PG_GETARG_NDBOX(1);
|
|
bool* result = (bool*)PG_GETARG_POINTER(2);
|
|
|
|
if (cube_cmp_v0(b1, b2) == 0)
|
|
*result = TRUE;
|
|
else
|
|
*result = FALSE;
|
|
|
|
/*
|
|
* fprintf(stderr, "same: %s\n", (*result ? "TRUE" : "FALSE" ));
|
|
*/
|
|
PG_RETURN_NDBOX(result);
|
|
}
|
|
|
|
/*
|
|
** SUPPORT ROUTINES
|
|
*/
|
|
bool g_cube_leaf_consistent(NDBOX* key, NDBOX* query, StrategyNumber strategy)
|
|
{
|
|
bool retval = false;
|
|
|
|
/*
|
|
* fprintf(stderr, "leaf_consistent, %d\n", strategy);
|
|
*/
|
|
switch (strategy) {
|
|
case RTOverlapStrategyNumber:
|
|
retval = (bool)cube_overlap_v0(key, query);
|
|
break;
|
|
case RTSameStrategyNumber:
|
|
retval = (bool)(cube_cmp_v0(key, query) == 0);
|
|
break;
|
|
case RTContainsStrategyNumber:
|
|
case RTOldContainsStrategyNumber:
|
|
retval = (bool)cube_contains_v0(key, query);
|
|
break;
|
|
case RTContainedByStrategyNumber:
|
|
case RTOldContainedByStrategyNumber:
|
|
retval = (bool)cube_contains_v0(query, key);
|
|
break;
|
|
default:
|
|
retval = FALSE;
|
|
}
|
|
return (retval);
|
|
}
|
|
|
|
bool g_cube_internal_consistent(NDBOX* key, NDBOX* query, StrategyNumber strategy)
|
|
{
|
|
bool retval = false;
|
|
|
|
/*
|
|
* fprintf(stderr, "internal_consistent, %d\n", strategy);
|
|
*/
|
|
switch (strategy) {
|
|
case RTOverlapStrategyNumber:
|
|
retval = (bool)cube_overlap_v0(key, query);
|
|
break;
|
|
case RTSameStrategyNumber:
|
|
case RTContainsStrategyNumber:
|
|
case RTOldContainsStrategyNumber:
|
|
retval = (bool)cube_contains_v0(key, query);
|
|
break;
|
|
case RTContainedByStrategyNumber:
|
|
case RTOldContainedByStrategyNumber:
|
|
retval = (bool)cube_overlap_v0(key, query);
|
|
break;
|
|
default:
|
|
retval = FALSE;
|
|
}
|
|
return (retval);
|
|
}
|
|
|
|
NDBOX* g_cube_binary_union(NDBOX* r1, NDBOX* r2, int* sizep)
|
|
{
|
|
NDBOX* retval = NULL;
|
|
|
|
retval = cube_union_v0(r1, r2);
|
|
*sizep = VARSIZE(retval);
|
|
|
|
return (retval);
|
|
}
|
|
|
|
/* cube_union_v0 */
|
|
NDBOX* cube_union_v0(NDBOX* a, NDBOX* b)
|
|
{
|
|
int i;
|
|
NDBOX* result = NULL;
|
|
|
|
if (a->dim >= b->dim) {
|
|
result = (NDBOX*)palloc0(VARSIZE(a));
|
|
SET_VARSIZE(result, VARSIZE(a));
|
|
result->dim = a->dim;
|
|
} else {
|
|
result = (NDBOX*)palloc0(VARSIZE(b));
|
|
SET_VARSIZE(result, VARSIZE(b));
|
|
result->dim = b->dim;
|
|
}
|
|
|
|
/* swap the box pointers if needed */
|
|
if (a->dim < b->dim) {
|
|
NDBOX* tmp = b;
|
|
|
|
b = a;
|
|
a = tmp;
|
|
}
|
|
|
|
/*
|
|
* use the potentially smaller of the two boxes (b) to fill in the result,
|
|
* padding absent dimensions with zeroes
|
|
*/
|
|
for (i = 0; i < b->dim; i++) {
|
|
result->x[i] = Min(b->x[i], b->x[i + b->dim]);
|
|
result->x[i + a->dim] = Max(b->x[i], b->x[i + b->dim]);
|
|
}
|
|
for (i = b->dim; i < a->dim; i++) {
|
|
result->x[i] = 0;
|
|
result->x[i + a->dim] = 0;
|
|
}
|
|
|
|
/* compute the union */
|
|
for (i = 0; i < a->dim; i++) {
|
|
result->x[i] = Min(Min(a->x[i], a->x[i + a->dim]), result->x[i]);
|
|
result->x[i + a->dim] = Max(Max(a->x[i], a->x[i + a->dim]), result->x[i + a->dim]);
|
|
}
|
|
|
|
return (result);
|
|
}
|
|
|
|
Datum cube_union(PG_FUNCTION_ARGS)
|
|
{
|
|
NDBOX* a = PG_GETARG_NDBOX(0);
|
|
NDBOX* b = PG_GETARG_NDBOX(1);
|
|
NDBOX* res = NULL;
|
|
|
|
res = cube_union_v0(a, b);
|
|
|
|
PG_FREE_IF_COPY(a, 0);
|
|
PG_FREE_IF_COPY(b, 1);
|
|
PG_RETURN_NDBOX(res);
|
|
}
|
|
|
|
/* cube_inter */
|
|
Datum cube_inter(PG_FUNCTION_ARGS)
|
|
{
|
|
NDBOX* a = PG_GETARG_NDBOX(0);
|
|
NDBOX* b = PG_GETARG_NDBOX(1);
|
|
NDBOX* result = NULL;
|
|
bool swapped = false;
|
|
int i;
|
|
|
|
if (a->dim >= b->dim) {
|
|
result = (NDBOX*)palloc0(VARSIZE(a));
|
|
SET_VARSIZE(result, VARSIZE(a));
|
|
result->dim = a->dim;
|
|
} else {
|
|
result = (NDBOX*)palloc0(VARSIZE(b));
|
|
SET_VARSIZE(result, VARSIZE(b));
|
|
result->dim = b->dim;
|
|
}
|
|
|
|
/* swap the box pointers if needed */
|
|
if (a->dim < b->dim) {
|
|
NDBOX* tmp = b;
|
|
|
|
b = a;
|
|
a = tmp;
|
|
swapped = true;
|
|
}
|
|
|
|
/*
|
|
* use the potentially smaller of the two boxes (b) to fill in the
|
|
* result, padding absent dimensions with zeroes
|
|
*/
|
|
for (i = 0; i < b->dim; i++) {
|
|
result->x[i] = Min(b->x[i], b->x[i + b->dim]);
|
|
result->x[i + a->dim] = Max(b->x[i], b->x[i + b->dim]);
|
|
}
|
|
for (i = b->dim; i < a->dim; i++) {
|
|
result->x[i] = 0;
|
|
result->x[i + a->dim] = 0;
|
|
}
|
|
|
|
/* compute the intersection */
|
|
for (i = 0; i < a->dim; i++) {
|
|
result->x[i] = Max(Min(a->x[i], a->x[i + a->dim]), result->x[i]);
|
|
result->x[i + a->dim] = Min(Max(a->x[i], a->x[i + a->dim]), result->x[i + a->dim]);
|
|
}
|
|
|
|
if (swapped) {
|
|
PG_FREE_IF_COPY(b, 0);
|
|
PG_FREE_IF_COPY(a, 1);
|
|
} else {
|
|
PG_FREE_IF_COPY(a, 0);
|
|
PG_FREE_IF_COPY(b, 1);
|
|
}
|
|
|
|
/*
|
|
* Is it OK to return a non-null intersection for non-overlapping boxes?
|
|
*/
|
|
PG_RETURN_NDBOX(result);
|
|
}
|
|
|
|
/* cube_size */
|
|
Datum cube_size(PG_FUNCTION_ARGS)
|
|
{
|
|
NDBOX* a = PG_GETARG_NDBOX(0);
|
|
double result;
|
|
int i, j;
|
|
|
|
result = 1.0;
|
|
for (i = 0, j = a->dim; i < a->dim; i++, j++)
|
|
result = result * Abs((a->x[j] - a->x[i]));
|
|
|
|
PG_FREE_IF_COPY(a, 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
void rt_cube_size(NDBOX* a, double* size)
|
|
{
|
|
int i, j;
|
|
|
|
if (a == (NDBOX*)NULL)
|
|
*size = 0.0;
|
|
else {
|
|
*size = 1.0;
|
|
for (i = 0, j = a->dim; i < a->dim; i++, j++)
|
|
*size = (*size) * Abs((a->x[j] - a->x[i]));
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* make up a metric in which one box will be 'lower' than the other
|
|
-- this can be useful for sorting and to determine uniqueness */
|
|
int32 cube_cmp_v0(NDBOX* a, NDBOX* b)
|
|
{
|
|
int i;
|
|
int dim;
|
|
|
|
dim = Min(a->dim, b->dim);
|
|
|
|
/* compare the common dimensions */
|
|
for (i = 0; i < dim; i++) {
|
|
if (Min(a->x[i], a->x[a->dim + i]) > Min(b->x[i], b->x[b->dim + i]))
|
|
return 1;
|
|
if (Min(a->x[i], a->x[a->dim + i]) < Min(b->x[i], b->x[b->dim + i]))
|
|
return -1;
|
|
}
|
|
for (i = 0; i < dim; i++) {
|
|
if (Max(a->x[i], a->x[a->dim + i]) > Max(b->x[i], b->x[b->dim + i]))
|
|
return 1;
|
|
if (Max(a->x[i], a->x[a->dim + i]) < Max(b->x[i], b->x[b->dim + i]))
|
|
return -1;
|
|
}
|
|
|
|
/* compare extra dimensions to zero */
|
|
if (a->dim > b->dim) {
|
|
for (i = dim; i < a->dim; i++) {
|
|
if (Min(a->x[i], a->x[a->dim + i]) > 0)
|
|
return 1;
|
|
if (Min(a->x[i], a->x[a->dim + i]) < 0)
|
|
return -1;
|
|
}
|
|
for (i = dim; i < a->dim; i++) {
|
|
if (Max(a->x[i], a->x[a->dim + i]) > 0)
|
|
return 1;
|
|
if (Max(a->x[i], a->x[a->dim + i]) < 0)
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* if all common dimensions are equal, the cube with more dimensions
|
|
* wins
|
|
*/
|
|
return 1;
|
|
}
|
|
if (a->dim < b->dim) {
|
|
for (i = dim; i < b->dim; i++) {
|
|
if (Min(b->x[i], b->x[b->dim + i]) > 0)
|
|
return -1;
|
|
if (Min(b->x[i], b->x[b->dim + i]) < 0)
|
|
return 1;
|
|
}
|
|
for (i = dim; i < b->dim; i++) {
|
|
if (Max(b->x[i], b->x[b->dim + i]) > 0)
|
|
return -1;
|
|
if (Max(b->x[i], b->x[b->dim + i]) < 0)
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* if all common dimensions are equal, the cube with more dimensions
|
|
* wins
|
|
*/
|
|
return -1;
|
|
}
|
|
|
|
/* They're really equal */
|
|
return 0;
|
|
}
|
|
|
|
Datum cube_cmp(PG_FUNCTION_ARGS)
|
|
{
|
|
NDBOX *a = PG_GETARG_NDBOX(0), *b = PG_GETARG_NDBOX(1);
|
|
int32 res;
|
|
|
|
res = cube_cmp_v0(a, b);
|
|
|
|
PG_FREE_IF_COPY(a, 0);
|
|
PG_FREE_IF_COPY(b, 1);
|
|
PG_RETURN_INT32(res);
|
|
}
|
|
|
|
Datum cube_eq(PG_FUNCTION_ARGS)
|
|
{
|
|
NDBOX *a = PG_GETARG_NDBOX(0), *b = PG_GETARG_NDBOX(1);
|
|
int32 res;
|
|
|
|
res = cube_cmp_v0(a, b);
|
|
|
|
PG_FREE_IF_COPY(a, 0);
|
|
PG_FREE_IF_COPY(b, 1);
|
|
PG_RETURN_BOOL(res == 0);
|
|
}
|
|
|
|
Datum cube_ne(PG_FUNCTION_ARGS)
|
|
{
|
|
NDBOX *a = PG_GETARG_NDBOX(0), *b = PG_GETARG_NDBOX(1);
|
|
int32 res;
|
|
|
|
res = cube_cmp_v0(a, b);
|
|
|
|
PG_FREE_IF_COPY(a, 0);
|
|
PG_FREE_IF_COPY(b, 1);
|
|
PG_RETURN_BOOL(res != 0);
|
|
}
|
|
|
|
Datum cube_lt(PG_FUNCTION_ARGS)
|
|
{
|
|
NDBOX *a = PG_GETARG_NDBOX(0), *b = PG_GETARG_NDBOX(1);
|
|
int32 res;
|
|
|
|
res = cube_cmp_v0(a, b);
|
|
|
|
PG_FREE_IF_COPY(a, 0);
|
|
PG_FREE_IF_COPY(b, 1);
|
|
PG_RETURN_BOOL(res < 0);
|
|
}
|
|
|
|
Datum cube_gt(PG_FUNCTION_ARGS)
|
|
{
|
|
NDBOX *a = PG_GETARG_NDBOX(0), *b = PG_GETARG_NDBOX(1);
|
|
int32 res;
|
|
|
|
res = cube_cmp_v0(a, b);
|
|
|
|
PG_FREE_IF_COPY(a, 0);
|
|
PG_FREE_IF_COPY(b, 1);
|
|
PG_RETURN_BOOL(res > 0);
|
|
}
|
|
|
|
Datum cube_le(PG_FUNCTION_ARGS)
|
|
{
|
|
NDBOX *a = PG_GETARG_NDBOX(0), *b = PG_GETARG_NDBOX(1);
|
|
int32 res;
|
|
|
|
res = cube_cmp_v0(a, b);
|
|
|
|
PG_FREE_IF_COPY(a, 0);
|
|
PG_FREE_IF_COPY(b, 1);
|
|
PG_RETURN_BOOL(res <= 0);
|
|
}
|
|
|
|
Datum cube_ge(PG_FUNCTION_ARGS)
|
|
{
|
|
NDBOX *a = PG_GETARG_NDBOX(0), *b = PG_GETARG_NDBOX(1);
|
|
int32 res;
|
|
|
|
res = cube_cmp_v0(a, b);
|
|
|
|
PG_FREE_IF_COPY(a, 0);
|
|
PG_FREE_IF_COPY(b, 1);
|
|
PG_RETURN_BOOL(res >= 0);
|
|
}
|
|
|
|
/* Contains */
|
|
/* Box(A) CONTAINS Box(B) IFF pt(A) < pt(B) */
|
|
bool cube_contains_v0(NDBOX* a, NDBOX* b)
|
|
{
|
|
int i;
|
|
|
|
if ((a == NULL) || (b == NULL))
|
|
return (FALSE);
|
|
|
|
if (a->dim < b->dim) {
|
|
/*
|
|
* the further comparisons will make sense if the excess dimensions of
|
|
* (b) were zeroes Since both UL and UR coordinates must be zero, we
|
|
* can check them all without worrying about which is which.
|
|
*/
|
|
for (i = a->dim; i < b->dim; i++) {
|
|
if (b->x[i] != 0)
|
|
return (FALSE);
|
|
if (b->x[i + b->dim] != 0)
|
|
return (FALSE);
|
|
}
|
|
}
|
|
|
|
/* Can't care less about the excess dimensions of (a), if any */
|
|
for (i = 0; i < Min(a->dim, b->dim); i++) {
|
|
if (Min(a->x[i], a->x[a->dim + i]) > Min(b->x[i], b->x[b->dim + i]))
|
|
return (FALSE);
|
|
if (Max(a->x[i], a->x[a->dim + i]) < Max(b->x[i], b->x[b->dim + i]))
|
|
return (FALSE);
|
|
}
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
Datum cube_contains(PG_FUNCTION_ARGS)
|
|
{
|
|
NDBOX *a = PG_GETARG_NDBOX(0), *b = PG_GETARG_NDBOX(1);
|
|
bool res = false;
|
|
|
|
res = cube_contains_v0(a, b);
|
|
|
|
PG_FREE_IF_COPY(a, 0);
|
|
PG_FREE_IF_COPY(b, 1);
|
|
PG_RETURN_BOOL(res);
|
|
}
|
|
|
|
/* Contained */
|
|
/* Box(A) Contained by Box(B) IFF Box(B) Contains Box(A) */
|
|
Datum cube_contained(PG_FUNCTION_ARGS)
|
|
{
|
|
NDBOX *a = PG_GETARG_NDBOX(0), *b = PG_GETARG_NDBOX(1);
|
|
bool res = false;
|
|
|
|
res = cube_contains_v0(b, a);
|
|
|
|
PG_FREE_IF_COPY(a, 0);
|
|
PG_FREE_IF_COPY(b, 1);
|
|
PG_RETURN_BOOL(res);
|
|
}
|
|
|
|
/* Overlap */
|
|
/* Box(A) Overlap Box(B) IFF (pt(a)LL < pt(B)UR) && (pt(b)LL < pt(a)UR) */
|
|
bool cube_overlap_v0(NDBOX* a, NDBOX* b)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* This *very bad* error was found in the source: if ( (a==NULL) ||
|
|
* (b=NULL) ) return(FALSE);
|
|
*/
|
|
if ((a == NULL) || (b == NULL))
|
|
return (FALSE);
|
|
|
|
/* swap the box pointers if needed */
|
|
if (a->dim < b->dim) {
|
|
NDBOX* tmp = b;
|
|
|
|
b = a;
|
|
a = tmp;
|
|
}
|
|
|
|
/* compare within the dimensions of (b) */
|
|
for (i = 0; i < b->dim; i++) {
|
|
if (Min(a->x[i], a->x[a->dim + i]) > Max(b->x[i], b->x[b->dim + i]))
|
|
return (FALSE);
|
|
if (Max(a->x[i], a->x[a->dim + i]) < Min(b->x[i], b->x[b->dim + i]))
|
|
return (FALSE);
|
|
}
|
|
|
|
/* compare to zero those dimensions in (a) absent in (b) */
|
|
for (i = b->dim; i < a->dim; i++) {
|
|
if (Min(a->x[i], a->x[a->dim + i]) > 0)
|
|
return (FALSE);
|
|
if (Max(a->x[i], a->x[a->dim + i]) < 0)
|
|
return (FALSE);
|
|
}
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
Datum cube_overlap(PG_FUNCTION_ARGS)
|
|
{
|
|
NDBOX *a = PG_GETARG_NDBOX(0), *b = PG_GETARG_NDBOX(1);
|
|
bool res = false;
|
|
|
|
res = cube_overlap_v0(a, b);
|
|
|
|
PG_FREE_IF_COPY(a, 0);
|
|
PG_FREE_IF_COPY(b, 1);
|
|
PG_RETURN_BOOL(res);
|
|
}
|
|
|
|
/* Distance */
|
|
/* The distance is computed as a per axis sum of the squared distances
|
|
between 1D projections of the boxes onto Cartesian axes. Assuming zero
|
|
distance between overlapping projections, this metric coincides with the
|
|
"common sense" geometric distance */
|
|
Datum cube_distance(PG_FUNCTION_ARGS)
|
|
{
|
|
NDBOX *a = PG_GETARG_NDBOX(0), *b = PG_GETARG_NDBOX(1);
|
|
bool swapped = false;
|
|
double d, distance;
|
|
int i;
|
|
|
|
/* swap the box pointers if needed */
|
|
if (a->dim < b->dim) {
|
|
NDBOX* tmp = b;
|
|
|
|
b = a;
|
|
a = tmp;
|
|
swapped = true;
|
|
}
|
|
|
|
distance = 0.0;
|
|
/* compute within the dimensions of (b) */
|
|
for (i = 0; i < b->dim; i++) {
|
|
d = distance_1D(a->x[i], a->x[i + a->dim], b->x[i], b->x[i + b->dim]);
|
|
distance += d * d;
|
|
}
|
|
|
|
/* compute distance to zero for those dimensions in (a) absent in (b) */
|
|
for (i = b->dim; i < a->dim; i++) {
|
|
d = distance_1D(a->x[i], a->x[i + a->dim], 0.0, 0.0);
|
|
distance += d * d;
|
|
}
|
|
|
|
if (swapped) {
|
|
PG_FREE_IF_COPY(b, 0);
|
|
PG_FREE_IF_COPY(a, 1);
|
|
} else {
|
|
PG_FREE_IF_COPY(a, 0);
|
|
PG_FREE_IF_COPY(b, 1);
|
|
}
|
|
|
|
PG_RETURN_FLOAT8(sqrt(distance));
|
|
}
|
|
|
|
static double distance_1D(double a1, double a2, double b1, double b2)
|
|
{
|
|
/* interval (a) is entirely on the left of (b) */
|
|
if ((a1 <= b1) && (a2 <= b1) && (a1 <= b2) && (a2 <= b2))
|
|
return (Min(b1, b2) - Max(a1, a2));
|
|
|
|
/* interval (a) is entirely on the right of (b) */
|
|
if ((a1 > b1) && (a2 > b1) && (a1 > b2) && (a2 > b2))
|
|
return (Min(a1, a2) - Max(b1, b2));
|
|
|
|
/* the rest are all sorts of intersections */
|
|
return (0.0);
|
|
}
|
|
|
|
/* Test if a box is also a point */
|
|
Datum cube_is_point(PG_FUNCTION_ARGS)
|
|
{
|
|
NDBOX* a = PG_GETARG_NDBOX(0);
|
|
int i, j;
|
|
|
|
for (i = 0, j = a->dim; i < a->dim; i++, j++) {
|
|
if (a->x[i] != a->x[j])
|
|
PG_RETURN_BOOL(FALSE);
|
|
}
|
|
|
|
PG_FREE_IF_COPY(a, 0);
|
|
PG_RETURN_BOOL(TRUE);
|
|
}
|
|
|
|
/* Return dimensions in use in the data structure */
|
|
Datum cube_dim(PG_FUNCTION_ARGS)
|
|
{
|
|
NDBOX* c = PG_GETARG_NDBOX(0);
|
|
int dim = c->dim;
|
|
|
|
PG_FREE_IF_COPY(c, 0);
|
|
PG_RETURN_INT32(dim);
|
|
}
|
|
|
|
/* Return a specific normalized LL coordinate */
|
|
Datum cube_ll_coord(PG_FUNCTION_ARGS)
|
|
{
|
|
NDBOX* c = PG_GETARG_NDBOX(0);
|
|
int n = PG_GETARG_INT16(1);
|
|
double result;
|
|
|
|
if (c->dim >= n && n > 0) {
|
|
result = Min(c->x[n - 1], c->x[c->dim + n - 1]);
|
|
} else {
|
|
result = 0;
|
|
}
|
|
|
|
PG_FREE_IF_COPY(c, 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/* Return a specific normalized UR coordinate */
|
|
Datum cube_ur_coord(PG_FUNCTION_ARGS)
|
|
{
|
|
NDBOX* c = PG_GETARG_NDBOX(0);
|
|
int n = PG_GETARG_INT16(1);
|
|
double result;
|
|
|
|
if (c->dim >= n && n > 0) {
|
|
result = Max(c->x[n - 1], c->x[c->dim + n - 1]);
|
|
} else {
|
|
result = 0;
|
|
}
|
|
|
|
PG_FREE_IF_COPY(c, 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/* Increase or decrease box size by a radius in at least n dimensions. */
|
|
Datum cube_enlarge(PG_FUNCTION_ARGS)
|
|
{
|
|
NDBOX* a = PG_GETARG_NDBOX(0);
|
|
double r = PG_GETARG_FLOAT8(1);
|
|
int4 n = PG_GETARG_INT32(2);
|
|
NDBOX* result = NULL;
|
|
int dim = 0;
|
|
int size;
|
|
int i, j, k;
|
|
|
|
if (n > CUBE_MAX_DIM)
|
|
n = CUBE_MAX_DIM;
|
|
if (r > 0 && n > 0)
|
|
dim = n;
|
|
if (a->dim > dim) {
|
|
dim = a->dim;
|
|
}
|
|
size = offsetof(NDBOX, x[0]) + sizeof(double) * dim * 2;
|
|
result = (NDBOX*)palloc0(size);
|
|
SET_VARSIZE(result, size);
|
|
result->dim = dim;
|
|
for (i = 0, j = dim, k = a->dim; i < a->dim; i++, j++, k++) {
|
|
if (a->x[i] >= a->x[k]) {
|
|
result->x[i] = a->x[k] - r;
|
|
result->x[j] = a->x[i] + r;
|
|
} else {
|
|
result->x[i] = a->x[i] - r;
|
|
result->x[j] = a->x[k] + r;
|
|
}
|
|
if (result->x[i] > result->x[j]) {
|
|
result->x[i] = (result->x[i] + result->x[j]) / 2;
|
|
result->x[j] = result->x[i];
|
|
}
|
|
}
|
|
/* dim > a->dim only if r > 0 */
|
|
for (; i < dim; i++, j++) {
|
|
result->x[i] = -r;
|
|
result->x[j] = r;
|
|
}
|
|
|
|
PG_FREE_IF_COPY(a, 0);
|
|
PG_RETURN_NDBOX(result);
|
|
}
|
|
|
|
/* Create a one dimensional box with identical upper and lower coordinates */
|
|
Datum cube_f8(PG_FUNCTION_ARGS)
|
|
{
|
|
double x = PG_GETARG_FLOAT8(0);
|
|
NDBOX* result = NULL;
|
|
int size;
|
|
|
|
size = offsetof(NDBOX, x[0]) + sizeof(double) * 2;
|
|
result = (NDBOX*)palloc0(size);
|
|
SET_VARSIZE(result, size);
|
|
result->dim = 1;
|
|
result->x[0] = result->x[1] = x;
|
|
|
|
PG_RETURN_NDBOX(result);
|
|
}
|
|
|
|
/* Create a one dimensional box */
|
|
Datum cube_f8_f8(PG_FUNCTION_ARGS)
|
|
{
|
|
double x0 = PG_GETARG_FLOAT8(0);
|
|
double x1 = PG_GETARG_FLOAT8(1);
|
|
NDBOX* result = NULL;
|
|
int size;
|
|
|
|
size = offsetof(NDBOX, x[0]) + sizeof(double) * 2;
|
|
result = (NDBOX*)palloc0(size);
|
|
SET_VARSIZE(result, size);
|
|
result->dim = 1;
|
|
result->x[0] = x0;
|
|
result->x[1] = x1;
|
|
|
|
PG_RETURN_NDBOX(result);
|
|
}
|
|
|
|
/* Add a dimension to an existing cube with the same values for the new
|
|
coordinate */
|
|
Datum cube_c_f8(PG_FUNCTION_ARGS)
|
|
{
|
|
NDBOX* c = PG_GETARG_NDBOX(0);
|
|
double x = PG_GETARG_FLOAT8(1);
|
|
NDBOX* result = NULL;
|
|
int size;
|
|
int i;
|
|
|
|
size = offsetof(NDBOX, x[0]) + sizeof(double) * (c->dim + 1) * 2;
|
|
result = (NDBOX*)palloc0(size);
|
|
SET_VARSIZE(result, size);
|
|
result->dim = c->dim + 1;
|
|
for (i = 0; i < c->dim; i++) {
|
|
result->x[i] = c->x[i];
|
|
result->x[result->dim + i] = c->x[c->dim + i];
|
|
}
|
|
result->x[result->dim - 1] = x;
|
|
result->x[2 * result->dim - 1] = x;
|
|
|
|
PG_FREE_IF_COPY(c, 0);
|
|
PG_RETURN_NDBOX(result);
|
|
}
|
|
|
|
/* Add a dimension to an existing cube */
|
|
Datum cube_c_f8_f8(PG_FUNCTION_ARGS)
|
|
{
|
|
NDBOX* c = PG_GETARG_NDBOX(0);
|
|
double x1 = PG_GETARG_FLOAT8(1);
|
|
double x2 = PG_GETARG_FLOAT8(2);
|
|
NDBOX* result = NULL;
|
|
int size;
|
|
int i;
|
|
|
|
size = offsetof(NDBOX, x[0]) + sizeof(double) * (c->dim + 1) * 2;
|
|
result = (NDBOX*)palloc0(size);
|
|
SET_VARSIZE(result, size);
|
|
result->dim = c->dim + 1;
|
|
for (i = 0; i < c->dim; i++) {
|
|
result->x[i] = c->x[i];
|
|
result->x[result->dim + i] = c->x[c->dim + i];
|
|
}
|
|
result->x[result->dim - 1] = x1;
|
|
result->x[2 * result->dim - 1] = x2;
|
|
|
|
PG_FREE_IF_COPY(c, 0);
|
|
PG_RETURN_NDBOX(result);
|
|
}
|