mirror of https://github.com/openzfs/zfs.git
932 lines
22 KiB
C
932 lines
22 KiB
C
/*
|
||
* Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
|
||
* Copyright (C) 2007 The Regents of the University of California.
|
||
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
|
||
* Written by Brian Behlendorf <behlendorf1@llnl.gov>.
|
||
* UCRL-CODE-235197
|
||
*
|
||
* This file is part of the SPL, Solaris Porting Layer.
|
||
*
|
||
* The SPL is free software; you can redistribute it and/or modify it
|
||
* under the terms of the GNU General Public License as published by the
|
||
* Free Software Foundation; either version 2 of the License, or (at your
|
||
* option) any later version.
|
||
*
|
||
* The SPL is distributed in the hope that it will be useful, but WITHOUT
|
||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
* for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License along
|
||
* with the SPL. If not, see <http://www.gnu.org/licenses/>.
|
||
*
|
||
* Solaris Porting Layer (SPL) Generic Implementation.
|
||
*/
|
||
|
||
#include <sys/isa_defs.h>
|
||
#include <sys/sysmacros.h>
|
||
#include <sys/systeminfo.h>
|
||
#include <sys/vmsystm.h>
|
||
#include <sys/kmem.h>
|
||
#include <sys/kmem_cache.h>
|
||
#include <sys/vmem.h>
|
||
#include <sys/mutex.h>
|
||
#include <sys/rwlock.h>
|
||
#include <sys/taskq.h>
|
||
#include <sys/tsd.h>
|
||
#include <sys/zmod.h>
|
||
#include <sys/debug.h>
|
||
#include <sys/proc.h>
|
||
#include <sys/kstat.h>
|
||
#include <sys/file.h>
|
||
#include <sys/sunddi.h>
|
||
#include <linux/ctype.h>
|
||
#include <sys/disp.h>
|
||
#include <sys/random.h>
|
||
#include <sys/string.h>
|
||
#include <linux/kmod.h>
|
||
#include <linux/mod_compat.h>
|
||
#include <sys/cred.h>
|
||
#include <sys/vnode.h>
|
||
#include <sys/misc.h>
|
||
#include <linux/mod_compat.h>
|
||
|
||
unsigned long spl_hostid = 0;
|
||
EXPORT_SYMBOL(spl_hostid);
|
||
|
||
/* CSTYLED */
|
||
module_param(spl_hostid, ulong, 0644);
|
||
MODULE_PARM_DESC(spl_hostid, "The system hostid.");
|
||
|
||
proc_t p0;
|
||
EXPORT_SYMBOL(p0);
|
||
|
||
/*
|
||
* xoshiro256++ 1.0 PRNG by David Blackman and Sebastiano Vigna
|
||
*
|
||
* "Scrambled Linear Pseudorandom Number Generators∗"
|
||
* https://vigna.di.unimi.it/ftp/papers/ScrambledLinear.pdf
|
||
*
|
||
* random_get_pseudo_bytes() is an API function on Illumos whose sole purpose
|
||
* is to provide bytes containing random numbers. It is mapped to /dev/urandom
|
||
* on Illumos, which uses a "FIPS 186-2 algorithm". No user of the SPL's
|
||
* random_get_pseudo_bytes() needs bytes that are of cryptographic quality, so
|
||
* we can implement it using a fast PRNG that we seed using Linux' actual
|
||
* equivalent to random_get_pseudo_bytes(). We do this by providing each CPU
|
||
* with an independent seed so that all calls to random_get_pseudo_bytes() are
|
||
* free of atomic instructions.
|
||
*
|
||
* A consequence of using a fast PRNG is that using random_get_pseudo_bytes()
|
||
* to generate words larger than 256 bits will paradoxically be limited to
|
||
* `2^256 - 1` possibilities. This is because we have a sequence of `2^256 - 1`
|
||
* 256-bit words and selecting the first will implicitly select the second. If
|
||
* a caller finds this behavior undesirable, random_get_bytes() should be used
|
||
* instead.
|
||
*
|
||
* XXX: Linux interrupt handlers that trigger within the critical section
|
||
* formed by `s[3] = xp[3];` and `xp[0] = s[0];` and call this function will
|
||
* see the same numbers. Nothing in the code currently calls this in an
|
||
* interrupt handler, so this is considered to be okay. If that becomes a
|
||
* problem, we could create a set of per-cpu variables for interrupt handlers
|
||
* and use them when in_interrupt() from linux/preempt_mask.h evaluates to
|
||
* true.
|
||
*/
|
||
static void __percpu *spl_pseudo_entropy;
|
||
|
||
/*
|
||
* rotl()/spl_rand_next()/spl_rand_jump() are copied from the following CC-0
|
||
* licensed file:
|
||
*
|
||
* https://prng.di.unimi.it/xoshiro256plusplus.c
|
||
*/
|
||
|
||
static inline uint64_t rotl(const uint64_t x, int k)
|
||
{
|
||
return ((x << k) | (x >> (64 - k)));
|
||
}
|
||
|
||
static inline uint64_t
|
||
spl_rand_next(uint64_t *s)
|
||
{
|
||
const uint64_t result = rotl(s[0] + s[3], 23) + s[0];
|
||
|
||
const uint64_t t = s[1] << 17;
|
||
|
||
s[2] ^= s[0];
|
||
s[3] ^= s[1];
|
||
s[1] ^= s[2];
|
||
s[0] ^= s[3];
|
||
|
||
s[2] ^= t;
|
||
|
||
s[3] = rotl(s[3], 45);
|
||
|
||
return (result);
|
||
}
|
||
|
||
static inline void
|
||
spl_rand_jump(uint64_t *s)
|
||
{
|
||
static const uint64_t JUMP[] = { 0x180ec6d33cfd0aba,
|
||
0xd5a61266f0c9392c, 0xa9582618e03fc9aa, 0x39abdc4529b1661c };
|
||
|
||
uint64_t s0 = 0;
|
||
uint64_t s1 = 0;
|
||
uint64_t s2 = 0;
|
||
uint64_t s3 = 0;
|
||
int i, b;
|
||
for (i = 0; i < sizeof (JUMP) / sizeof (*JUMP); i++)
|
||
for (b = 0; b < 64; b++) {
|
||
if (JUMP[i] & 1ULL << b) {
|
||
s0 ^= s[0];
|
||
s1 ^= s[1];
|
||
s2 ^= s[2];
|
||
s3 ^= s[3];
|
||
}
|
||
(void) spl_rand_next(s);
|
||
}
|
||
|
||
s[0] = s0;
|
||
s[1] = s1;
|
||
s[2] = s2;
|
||
s[3] = s3;
|
||
}
|
||
|
||
int
|
||
random_get_pseudo_bytes(uint8_t *ptr, size_t len)
|
||
{
|
||
uint64_t *xp, s[4];
|
||
|
||
ASSERT(ptr);
|
||
|
||
xp = get_cpu_ptr(spl_pseudo_entropy);
|
||
|
||
s[0] = xp[0];
|
||
s[1] = xp[1];
|
||
s[2] = xp[2];
|
||
s[3] = xp[3];
|
||
|
||
while (len) {
|
||
union {
|
||
uint64_t ui64;
|
||
uint8_t byte[sizeof (uint64_t)];
|
||
}entropy;
|
||
int i = MIN(len, sizeof (uint64_t));
|
||
|
||
len -= i;
|
||
entropy.ui64 = spl_rand_next(s);
|
||
|
||
/*
|
||
* xoshiro256++ has low entropy lower bytes, so we copy the
|
||
* higher order bytes first.
|
||
*/
|
||
while (i--)
|
||
#ifdef _ZFS_BIG_ENDIAN
|
||
*ptr++ = entropy.byte[i];
|
||
#else
|
||
*ptr++ = entropy.byte[7 - i];
|
||
#endif
|
||
}
|
||
|
||
xp[0] = s[0];
|
||
xp[1] = s[1];
|
||
xp[2] = s[2];
|
||
xp[3] = s[3];
|
||
|
||
put_cpu_ptr(spl_pseudo_entropy);
|
||
|
||
return (0);
|
||
}
|
||
|
||
|
||
EXPORT_SYMBOL(random_get_pseudo_bytes);
|
||
|
||
#if BITS_PER_LONG == 32
|
||
|
||
/*
|
||
* Support 64/64 => 64 division on a 32-bit platform. While the kernel
|
||
* provides a div64_u64() function for this we do not use it because the
|
||
* implementation is flawed. There are cases which return incorrect
|
||
* results as late as linux-2.6.35. Until this is fixed upstream the
|
||
* spl must provide its own implementation.
|
||
*
|
||
* This implementation is a slightly modified version of the algorithm
|
||
* proposed by the book 'Hacker's Delight'. The original source can be
|
||
* found here and is available for use without restriction.
|
||
*
|
||
* http://www.hackersdelight.org/HDcode/newCode/divDouble.c
|
||
*/
|
||
|
||
/*
|
||
* Calculate number of leading of zeros for a 64-bit value.
|
||
*/
|
||
static int
|
||
nlz64(uint64_t x)
|
||
{
|
||
register int n = 0;
|
||
|
||
if (x == 0)
|
||
return (64);
|
||
|
||
if (x <= 0x00000000FFFFFFFFULL) { n = n + 32; x = x << 32; }
|
||
if (x <= 0x0000FFFFFFFFFFFFULL) { n = n + 16; x = x << 16; }
|
||
if (x <= 0x00FFFFFFFFFFFFFFULL) { n = n + 8; x = x << 8; }
|
||
if (x <= 0x0FFFFFFFFFFFFFFFULL) { n = n + 4; x = x << 4; }
|
||
if (x <= 0x3FFFFFFFFFFFFFFFULL) { n = n + 2; x = x << 2; }
|
||
if (x <= 0x7FFFFFFFFFFFFFFFULL) { n = n + 1; }
|
||
|
||
return (n);
|
||
}
|
||
|
||
/*
|
||
* Newer kernels have a div_u64() function but we define our own
|
||
* to simplify portability between kernel versions.
|
||
*/
|
||
static inline uint64_t
|
||
__div_u64(uint64_t u, uint32_t v)
|
||
{
|
||
(void) do_div(u, v);
|
||
return (u);
|
||
}
|
||
|
||
/*
|
||
* Turn off missing prototypes warning for these functions. They are
|
||
* replacements for libgcc-provided functions and will never be called
|
||
* directly.
|
||
*/
|
||
#if defined(__GNUC__) && !defined(__clang__)
|
||
#pragma GCC diagnostic push
|
||
#pragma GCC diagnostic ignored "-Wmissing-prototypes"
|
||
#endif
|
||
|
||
/*
|
||
* Implementation of 64-bit unsigned division for 32-bit machines.
|
||
*
|
||
* First the procedure takes care of the case in which the divisor is a
|
||
* 32-bit quantity. There are two subcases: (1) If the left half of the
|
||
* dividend is less than the divisor, one execution of do_div() is all that
|
||
* is required (overflow is not possible). (2) Otherwise it does two
|
||
* divisions, using the grade school method.
|
||
*/
|
||
uint64_t
|
||
__udivdi3(uint64_t u, uint64_t v)
|
||
{
|
||
uint64_t u0, u1, v1, q0, q1, k;
|
||
int n;
|
||
|
||
if (v >> 32 == 0) { // If v < 2**32:
|
||
if (u >> 32 < v) { // If u/v cannot overflow,
|
||
return (__div_u64(u, v)); // just do one division.
|
||
} else { // If u/v would overflow:
|
||
u1 = u >> 32; // Break u into two halves.
|
||
u0 = u & 0xFFFFFFFF;
|
||
q1 = __div_u64(u1, v); // First quotient digit.
|
||
k = u1 - q1 * v; // First remainder, < v.
|
||
u0 += (k << 32);
|
||
q0 = __div_u64(u0, v); // Seconds quotient digit.
|
||
return ((q1 << 32) + q0);
|
||
}
|
||
} else { // If v >= 2**32:
|
||
n = nlz64(v); // 0 <= n <= 31.
|
||
v1 = (v << n) >> 32; // Normalize divisor, MSB is 1.
|
||
u1 = u >> 1; // To ensure no overflow.
|
||
q1 = __div_u64(u1, v1); // Get quotient from
|
||
q0 = (q1 << n) >> 31; // Undo normalization and
|
||
// division of u by 2.
|
||
if (q0 != 0) // Make q0 correct or
|
||
q0 = q0 - 1; // too small by 1.
|
||
if ((u - q0 * v) >= v)
|
||
q0 = q0 + 1; // Now q0 is correct.
|
||
|
||
return (q0);
|
||
}
|
||
}
|
||
EXPORT_SYMBOL(__udivdi3);
|
||
|
||
#ifndef abs64
|
||
/* CSTYLED */
|
||
#define abs64(x) ({ uint64_t t = (x) >> 63; ((x) ^ t) - t; })
|
||
#endif
|
||
|
||
/*
|
||
* Implementation of 64-bit signed division for 32-bit machines.
|
||
*/
|
||
int64_t
|
||
__divdi3(int64_t u, int64_t v)
|
||
{
|
||
int64_t q, t;
|
||
q = __udivdi3(abs64(u), abs64(v));
|
||
t = (u ^ v) >> 63; // If u, v have different
|
||
return ((q ^ t) - t); // signs, negate q.
|
||
}
|
||
EXPORT_SYMBOL(__divdi3);
|
||
|
||
/*
|
||
* Implementation of 64-bit unsigned modulo for 32-bit machines.
|
||
*/
|
||
uint64_t
|
||
__umoddi3(uint64_t dividend, uint64_t divisor)
|
||
{
|
||
return (dividend - (divisor * __udivdi3(dividend, divisor)));
|
||
}
|
||
EXPORT_SYMBOL(__umoddi3);
|
||
|
||
/* 64-bit signed modulo for 32-bit machines. */
|
||
int64_t
|
||
__moddi3(int64_t n, int64_t d)
|
||
{
|
||
int64_t q;
|
||
boolean_t nn = B_FALSE;
|
||
|
||
if (n < 0) {
|
||
nn = B_TRUE;
|
||
n = -n;
|
||
}
|
||
if (d < 0)
|
||
d = -d;
|
||
|
||
q = __umoddi3(n, d);
|
||
|
||
return (nn ? -q : q);
|
||
}
|
||
EXPORT_SYMBOL(__moddi3);
|
||
|
||
/*
|
||
* Implementation of 64-bit unsigned division/modulo for 32-bit machines.
|
||
*/
|
||
uint64_t
|
||
__udivmoddi4(uint64_t n, uint64_t d, uint64_t *r)
|
||
{
|
||
uint64_t q = __udivdi3(n, d);
|
||
if (r)
|
||
*r = n - d * q;
|
||
return (q);
|
||
}
|
||
EXPORT_SYMBOL(__udivmoddi4);
|
||
|
||
/*
|
||
* Implementation of 64-bit signed division/modulo for 32-bit machines.
|
||
*/
|
||
int64_t
|
||
__divmoddi4(int64_t n, int64_t d, int64_t *r)
|
||
{
|
||
int64_t q, rr;
|
||
boolean_t nn = B_FALSE;
|
||
boolean_t nd = B_FALSE;
|
||
if (n < 0) {
|
||
nn = B_TRUE;
|
||
n = -n;
|
||
}
|
||
if (d < 0) {
|
||
nd = B_TRUE;
|
||
d = -d;
|
||
}
|
||
|
||
q = __udivmoddi4(n, d, (uint64_t *)&rr);
|
||
|
||
if (nn != nd)
|
||
q = -q;
|
||
if (nn)
|
||
rr = -rr;
|
||
if (r)
|
||
*r = rr;
|
||
return (q);
|
||
}
|
||
EXPORT_SYMBOL(__divmoddi4);
|
||
|
||
#if defined(__arm) || defined(__arm__)
|
||
/*
|
||
* Implementation of 64-bit (un)signed division for 32-bit arm machines.
|
||
*
|
||
* Run-time ABI for the ARM Architecture (page 20). A pair of (unsigned)
|
||
* long longs is returned in {{r0, r1}, {r2,r3}}, the quotient in {r0, r1},
|
||
* and the remainder in {r2, r3}. The return type is specifically left
|
||
* set to 'void' to ensure the compiler does not overwrite these registers
|
||
* during the return. All results are in registers as per ABI
|
||
*/
|
||
void
|
||
__aeabi_uldivmod(uint64_t u, uint64_t v)
|
||
{
|
||
uint64_t res;
|
||
uint64_t mod;
|
||
|
||
res = __udivdi3(u, v);
|
||
mod = __umoddi3(u, v);
|
||
{
|
||
register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
|
||
register uint32_t r1 asm("r1") = (res >> 32);
|
||
register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
|
||
register uint32_t r3 asm("r3") = (mod >> 32);
|
||
|
||
asm volatile(""
|
||
: "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3) /* output */
|
||
: "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */
|
||
|
||
return; /* r0; */
|
||
}
|
||
}
|
||
EXPORT_SYMBOL(__aeabi_uldivmod);
|
||
|
||
void
|
||
__aeabi_ldivmod(int64_t u, int64_t v)
|
||
{
|
||
int64_t res;
|
||
uint64_t mod;
|
||
|
||
res = __divdi3(u, v);
|
||
mod = __umoddi3(u, v);
|
||
{
|
||
register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
|
||
register uint32_t r1 asm("r1") = (res >> 32);
|
||
register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
|
||
register uint32_t r3 asm("r3") = (mod >> 32);
|
||
|
||
asm volatile(""
|
||
: "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3) /* output */
|
||
: "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */
|
||
|
||
return; /* r0; */
|
||
}
|
||
}
|
||
EXPORT_SYMBOL(__aeabi_ldivmod);
|
||
#endif /* __arm || __arm__ */
|
||
|
||
#if defined(__GNUC__) && !defined(__clang__)
|
||
#pragma GCC diagnostic pop
|
||
#endif
|
||
|
||
#endif /* BITS_PER_LONG */
|
||
|
||
/*
|
||
* NOTE: The strtoxx behavior is solely based on my reading of the Solaris
|
||
* ddi_strtol(9F) man page. I have not verified the behavior of these
|
||
* functions against their Solaris counterparts. It is possible that I
|
||
* may have misinterpreted the man page or the man page is incorrect.
|
||
*/
|
||
int ddi_strtol(const char *, char **, int, long *);
|
||
int ddi_strtoull(const char *, char **, int, unsigned long long *);
|
||
int ddi_strtoll(const char *, char **, int, long long *);
|
||
|
||
#define define_ddi_strtox(type, valtype) \
|
||
int ddi_strto##type(const char *str, char **endptr, \
|
||
int base, valtype *result) \
|
||
{ \
|
||
valtype last_value, value = 0; \
|
||
char *ptr = (char *)str; \
|
||
int digit, minus = 0; \
|
||
\
|
||
while (strchr(" \t\n\r\f", *ptr)) \
|
||
++ptr; \
|
||
\
|
||
if (strlen(ptr) == 0) \
|
||
return (EINVAL); \
|
||
\
|
||
switch (*ptr) { \
|
||
case '-': \
|
||
minus = 1; \
|
||
zfs_fallthrough; \
|
||
case '+': \
|
||
++ptr; \
|
||
break; \
|
||
} \
|
||
\
|
||
/* Auto-detect base based on prefix */ \
|
||
if (!base) { \
|
||
if (str[0] == '0') { \
|
||
if (tolower(str[1]) == 'x' && isxdigit(str[2])) { \
|
||
base = 16; /* hex */ \
|
||
ptr += 2; \
|
||
} else if (str[1] >= '0' && str[1] < '8') { \
|
||
base = 8; /* octal */ \
|
||
ptr += 1; \
|
||
} else { \
|
||
return (EINVAL); \
|
||
} \
|
||
} else { \
|
||
base = 10; /* decimal */ \
|
||
} \
|
||
} \
|
||
\
|
||
while (1) { \
|
||
if (isdigit(*ptr)) \
|
||
digit = *ptr - '0'; \
|
||
else if (isalpha(*ptr)) \
|
||
digit = tolower(*ptr) - 'a' + 10; \
|
||
else \
|
||
break; \
|
||
\
|
||
if (digit >= base) \
|
||
break; \
|
||
\
|
||
last_value = value; \
|
||
value = value * base + digit; \
|
||
if (last_value > value) /* Overflow */ \
|
||
return (ERANGE); \
|
||
\
|
||
ptr++; \
|
||
} \
|
||
\
|
||
*result = minus ? -value : value; \
|
||
\
|
||
if (endptr) \
|
||
*endptr = ptr; \
|
||
\
|
||
return (0); \
|
||
} \
|
||
|
||
define_ddi_strtox(l, long)
|
||
define_ddi_strtox(ull, unsigned long long)
|
||
define_ddi_strtox(ll, long long)
|
||
|
||
EXPORT_SYMBOL(ddi_strtol);
|
||
EXPORT_SYMBOL(ddi_strtoll);
|
||
EXPORT_SYMBOL(ddi_strtoull);
|
||
|
||
int
|
||
ddi_copyin(const void *from, void *to, size_t len, int flags)
|
||
{
|
||
/* Fake ioctl() issued by kernel, 'from' is a kernel address */
|
||
if (flags & FKIOCTL) {
|
||
memcpy(to, from, len);
|
||
return (0);
|
||
}
|
||
|
||
return (copyin(from, to, len));
|
||
}
|
||
EXPORT_SYMBOL(ddi_copyin);
|
||
|
||
#define define_spl_param(type, fmt) \
|
||
int \
|
||
spl_param_get_##type(char *buf, zfs_kernel_param_t *kp) \
|
||
{ \
|
||
return (scnprintf(buf, PAGE_SIZE, fmt "\n", \
|
||
*(type *)kp->arg)); \
|
||
} \
|
||
int \
|
||
spl_param_set_##type(const char *buf, zfs_kernel_param_t *kp) \
|
||
{ \
|
||
return (kstrto##type(buf, 0, (type *)kp->arg)); \
|
||
} \
|
||
const struct kernel_param_ops spl_param_ops_##type = { \
|
||
.set = spl_param_set_##type, \
|
||
.get = spl_param_get_##type, \
|
||
}; \
|
||
EXPORT_SYMBOL(spl_param_get_##type); \
|
||
EXPORT_SYMBOL(spl_param_set_##type); \
|
||
EXPORT_SYMBOL(spl_param_ops_##type);
|
||
|
||
define_spl_param(s64, "%lld")
|
||
define_spl_param(u64, "%llu")
|
||
|
||
/*
|
||
* Post a uevent to userspace whenever a new vdev adds to the pool. It is
|
||
* necessary to sync blkid information with udev, which zed daemon uses
|
||
* during device hotplug to identify the vdev.
|
||
*/
|
||
void
|
||
spl_signal_kobj_evt(struct block_device *bdev)
|
||
{
|
||
#if defined(HAVE_BDEV_KOBJ) || defined(HAVE_PART_TO_DEV)
|
||
#ifdef HAVE_BDEV_KOBJ
|
||
struct kobject *disk_kobj = bdev_kobj(bdev);
|
||
#else
|
||
struct kobject *disk_kobj = &part_to_dev(bdev->bd_part)->kobj;
|
||
#endif
|
||
if (disk_kobj) {
|
||
int ret = kobject_uevent(disk_kobj, KOBJ_CHANGE);
|
||
if (ret) {
|
||
pr_warn("ZFS: Sending event '%d' to kobject: '%s'"
|
||
" (%p): failed(ret:%d)\n", KOBJ_CHANGE,
|
||
kobject_name(disk_kobj), disk_kobj, ret);
|
||
}
|
||
}
|
||
#else
|
||
/*
|
||
* This is encountered if neither bdev_kobj() nor part_to_dev() is available
|
||
* in the kernel - likely due to an API change that needs to be chased down.
|
||
*/
|
||
#error "Unsupported kernel: unable to get struct kobj from bdev"
|
||
#endif
|
||
}
|
||
EXPORT_SYMBOL(spl_signal_kobj_evt);
|
||
|
||
int
|
||
ddi_copyout(const void *from, void *to, size_t len, int flags)
|
||
{
|
||
/* Fake ioctl() issued by kernel, 'from' is a kernel address */
|
||
if (flags & FKIOCTL) {
|
||
memcpy(to, from, len);
|
||
return (0);
|
||
}
|
||
|
||
return (copyout(from, to, len));
|
||
}
|
||
EXPORT_SYMBOL(ddi_copyout);
|
||
|
||
static ssize_t
|
||
spl_kernel_read(struct file *file, void *buf, size_t count, loff_t *pos)
|
||
{
|
||
#if defined(HAVE_KERNEL_READ_PPOS)
|
||
return (kernel_read(file, buf, count, pos));
|
||
#else
|
||
mm_segment_t saved_fs;
|
||
ssize_t ret;
|
||
|
||
saved_fs = get_fs();
|
||
set_fs(KERNEL_DS);
|
||
|
||
ret = vfs_read(file, (void __user *)buf, count, pos);
|
||
|
||
set_fs(saved_fs);
|
||
|
||
return (ret);
|
||
#endif
|
||
}
|
||
|
||
static int
|
||
spl_getattr(struct file *filp, struct kstat *stat)
|
||
{
|
||
int rc;
|
||
|
||
ASSERT(filp);
|
||
ASSERT(stat);
|
||
|
||
#if defined(HAVE_4ARGS_VFS_GETATTR)
|
||
rc = vfs_getattr(&filp->f_path, stat, STATX_BASIC_STATS,
|
||
AT_STATX_SYNC_AS_STAT);
|
||
#elif defined(HAVE_2ARGS_VFS_GETATTR)
|
||
rc = vfs_getattr(&filp->f_path, stat);
|
||
#elif defined(HAVE_3ARGS_VFS_GETATTR)
|
||
rc = vfs_getattr(filp->f_path.mnt, filp->f_dentry, stat);
|
||
#else
|
||
#error "No available vfs_getattr()"
|
||
#endif
|
||
if (rc)
|
||
return (-rc);
|
||
|
||
return (0);
|
||
}
|
||
|
||
/*
|
||
* Read the unique system identifier from the /etc/hostid file.
|
||
*
|
||
* The behavior of /usr/bin/hostid on Linux systems with the
|
||
* regular eglibc and coreutils is:
|
||
*
|
||
* 1. Generate the value if the /etc/hostid file does not exist
|
||
* or if the /etc/hostid file is less than four bytes in size.
|
||
*
|
||
* 2. If the /etc/hostid file is at least 4 bytes, then return
|
||
* the first four bytes [0..3] in native endian order.
|
||
*
|
||
* 3. Always ignore bytes [4..] if they exist in the file.
|
||
*
|
||
* Only the first four bytes are significant, even on systems that
|
||
* have a 64-bit word size.
|
||
*
|
||
* See:
|
||
*
|
||
* eglibc: sysdeps/unix/sysv/linux/gethostid.c
|
||
* coreutils: src/hostid.c
|
||
*
|
||
* Notes:
|
||
*
|
||
* The /etc/hostid file on Solaris is a text file that often reads:
|
||
*
|
||
* # DO NOT EDIT
|
||
* "0123456789"
|
||
*
|
||
* Directly copying this file to Linux results in a constant
|
||
* hostid of 4f442023 because the default comment constitutes
|
||
* the first four bytes of the file.
|
||
*
|
||
*/
|
||
|
||
static char *spl_hostid_path = HW_HOSTID_PATH;
|
||
module_param(spl_hostid_path, charp, 0444);
|
||
MODULE_PARM_DESC(spl_hostid_path, "The system hostid file (/etc/hostid)");
|
||
|
||
static int
|
||
hostid_read(uint32_t *hostid)
|
||
{
|
||
uint64_t size;
|
||
uint32_t value = 0;
|
||
int error;
|
||
loff_t off;
|
||
struct file *filp;
|
||
struct kstat stat;
|
||
|
||
filp = filp_open(spl_hostid_path, 0, 0);
|
||
|
||
if (IS_ERR(filp))
|
||
return (ENOENT);
|
||
|
||
error = spl_getattr(filp, &stat);
|
||
if (error) {
|
||
filp_close(filp, 0);
|
||
return (error);
|
||
}
|
||
size = stat.size;
|
||
// cppcheck-suppress sizeofwithnumericparameter
|
||
if (size < sizeof (HW_HOSTID_MASK)) {
|
||
filp_close(filp, 0);
|
||
return (EINVAL);
|
||
}
|
||
|
||
off = 0;
|
||
/*
|
||
* Read directly into the variable like eglibc does.
|
||
* Short reads are okay; native behavior is preserved.
|
||
*/
|
||
error = spl_kernel_read(filp, &value, sizeof (value), &off);
|
||
if (error < 0) {
|
||
filp_close(filp, 0);
|
||
return (EIO);
|
||
}
|
||
|
||
/* Mask down to 32 bits like coreutils does. */
|
||
*hostid = (value & HW_HOSTID_MASK);
|
||
filp_close(filp, 0);
|
||
|
||
return (0);
|
||
}
|
||
|
||
/*
|
||
* Return the system hostid. Preferentially use the spl_hostid module option
|
||
* when set, otherwise use the value in the /etc/hostid file.
|
||
*/
|
||
uint32_t
|
||
zone_get_hostid(void *zone)
|
||
{
|
||
uint32_t hostid;
|
||
|
||
ASSERT3P(zone, ==, NULL);
|
||
|
||
if (spl_hostid != 0)
|
||
return ((uint32_t)(spl_hostid & HW_HOSTID_MASK));
|
||
|
||
if (hostid_read(&hostid) == 0)
|
||
return (hostid);
|
||
|
||
return (0);
|
||
}
|
||
EXPORT_SYMBOL(zone_get_hostid);
|
||
|
||
static int
|
||
spl_kvmem_init(void)
|
||
{
|
||
int rc = 0;
|
||
|
||
rc = spl_kmem_init();
|
||
if (rc)
|
||
return (rc);
|
||
|
||
rc = spl_vmem_init();
|
||
if (rc) {
|
||
spl_kmem_fini();
|
||
return (rc);
|
||
}
|
||
|
||
return (rc);
|
||
}
|
||
|
||
/*
|
||
* We initialize the random number generator with 128 bits of entropy from the
|
||
* system random number generator. In the improbable case that we have a zero
|
||
* seed, we fallback to the system jiffies, unless it is also zero, in which
|
||
* situation we use a preprogrammed seed. We step forward by 2^64 iterations to
|
||
* initialize each of the per-cpu seeds so that the sequences generated on each
|
||
* CPU are guaranteed to never overlap in practice.
|
||
*/
|
||
static int __init
|
||
spl_random_init(void)
|
||
{
|
||
uint64_t s[4];
|
||
int i = 0;
|
||
|
||
spl_pseudo_entropy = __alloc_percpu(4 * sizeof (uint64_t),
|
||
sizeof (uint64_t));
|
||
|
||
if (!spl_pseudo_entropy)
|
||
return (-ENOMEM);
|
||
|
||
get_random_bytes(s, sizeof (s));
|
||
|
||
if (s[0] == 0 && s[1] == 0 && s[2] == 0 && s[3] == 0) {
|
||
if (jiffies != 0) {
|
||
s[0] = jiffies;
|
||
s[1] = ~0 - jiffies;
|
||
s[2] = ~jiffies;
|
||
s[3] = jiffies - ~0;
|
||
} else {
|
||
(void) memcpy(s, "improbable seed", 16);
|
||
}
|
||
printk("SPL: get_random_bytes() returned 0 "
|
||
"when generating random seed. Setting initial seed to "
|
||
"0x%016llx%016llx%016llx%016llx.\n", cpu_to_be64(s[0]),
|
||
cpu_to_be64(s[1]), cpu_to_be64(s[2]), cpu_to_be64(s[3]));
|
||
}
|
||
|
||
for_each_possible_cpu(i) {
|
||
uint64_t *wordp = per_cpu_ptr(spl_pseudo_entropy, i);
|
||
|
||
spl_rand_jump(s);
|
||
|
||
wordp[0] = s[0];
|
||
wordp[1] = s[1];
|
||
wordp[2] = s[2];
|
||
wordp[3] = s[3];
|
||
}
|
||
|
||
return (0);
|
||
}
|
||
|
||
static void
|
||
spl_random_fini(void)
|
||
{
|
||
free_percpu(spl_pseudo_entropy);
|
||
}
|
||
|
||
static void
|
||
spl_kvmem_fini(void)
|
||
{
|
||
spl_vmem_fini();
|
||
spl_kmem_fini();
|
||
}
|
||
|
||
static int __init
|
||
spl_init(void)
|
||
{
|
||
int rc = 0;
|
||
|
||
if ((rc = spl_random_init()))
|
||
goto out0;
|
||
|
||
if ((rc = spl_kvmem_init()))
|
||
goto out1;
|
||
|
||
if ((rc = spl_tsd_init()))
|
||
goto out2;
|
||
|
||
if ((rc = spl_taskq_init()))
|
||
goto out3;
|
||
|
||
if ((rc = spl_kmem_cache_init()))
|
||
goto out4;
|
||
|
||
if ((rc = spl_proc_init()))
|
||
goto out5;
|
||
|
||
if ((rc = spl_kstat_init()))
|
||
goto out6;
|
||
|
||
if ((rc = spl_zlib_init()))
|
||
goto out7;
|
||
|
||
if ((rc = spl_zone_init()))
|
||
goto out8;
|
||
|
||
return (rc);
|
||
|
||
out8:
|
||
spl_zlib_fini();
|
||
out7:
|
||
spl_kstat_fini();
|
||
out6:
|
||
spl_proc_fini();
|
||
out5:
|
||
spl_kmem_cache_fini();
|
||
out4:
|
||
spl_taskq_fini();
|
||
out3:
|
||
spl_tsd_fini();
|
||
out2:
|
||
spl_kvmem_fini();
|
||
out1:
|
||
spl_random_fini();
|
||
out0:
|
||
return (rc);
|
||
}
|
||
|
||
static void __exit
|
||
spl_fini(void)
|
||
{
|
||
spl_zone_fini();
|
||
spl_zlib_fini();
|
||
spl_kstat_fini();
|
||
spl_proc_fini();
|
||
spl_kmem_cache_fini();
|
||
spl_taskq_fini();
|
||
spl_tsd_fini();
|
||
spl_kvmem_fini();
|
||
spl_random_fini();
|
||
}
|
||
|
||
module_init(spl_init);
|
||
module_exit(spl_fini);
|
||
|
||
MODULE_DESCRIPTION("Solaris Porting Layer");
|
||
MODULE_AUTHOR(ZFS_META_AUTHOR);
|
||
MODULE_LICENSE("GPL");
|
||
MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE);
|