opendata/20220814/Source/extract_audio_feature.py

82 lines
3.4 KiB
Python

import librosa
import numpy as np
import os
import csv
def extract_audio_feature(path):
y, sr = librosa.load(path, mono=True, sr=None)
chroma_stft = librosa.feature.chroma_stft(y=y, sr=sr)
rmse = librosa.feature.rms(y=y)
spec_cent = librosa.feature.spectral_centroid(y=y, sr=sr)
spec_bw = librosa.feature.spectral_bandwidth(y=y, sr=sr)
rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr)
zcr = librosa.feature.zero_crossing_rate(y)
mfcc = librosa.feature.mfcc(y=y, sr=sr)
features = f'{np.mean(chroma_stft)} {np.mean(rmse)} {np.mean(spec_cent)} {np.mean(spec_bw)} {np.mean(rolloff)} {np.mean(zcr)}'
for e in mfcc:
features += f' {np.mean(e)}'
return features
def preprocess_ravdess2():
header = 'filename chroma_stft rmse spectral_centroid spectral_bandwidth rolloff zero_crossing_rate'
for i in range(1, 21):
header += f' mfcc{i}'
header += ' label'
header = header.split()
file = open('../Output/only_class_data.csv', 'a', newline='')
with file:
writer = csv.writer(file)
writer.writerow(header)
for label in os.listdir(f'class'):
if label != '_desktop.ini':
print('label',label)
for audio in os.listdir(f'class/{label}'):
print('audio',audio)
if audio.split('.')[-1] == 'wav' and audio != '_desktop.ini':
audio_path = f'class/{label}/{audio}'
print(audio_path)
to_append = f'{"0809"}_{label}_{audio}'
features = extract_audio_feature(audio_path)
to_append += f' {features}'
to_append += f' {label}'
file = open('../Output/only_class_data.csv', 'a', newline='')
with file:
writer = csv.writer(file)
writer.writerow(to_append.split())
def preprocess_ravdess():
header = 'filename chroma_stft rmse spectral_centroid spectral_bandwidth rolloff zero_crossing_rate'
for i in range(1, 21):
header += f' mfcc{i}'
header += ' label'
header = header.split()
# file = open('../Output/only_casia.csv', 'w+', newline='')
# with file:
# writer = csv.writer(file)
# writer.writerow(header)
emotions = 'neutral calm happy sad angry fear disgust surprise'.split()
for actor in os.listdir(r'casia'):
print('actor',actor)
for label in os.listdir(f'casia/{actor}'):
if label != '_desktop.ini':
print('label',label)
for audio in os.listdir(f'casia/{actor}/{label}'):
print('audio',audio)
if audio.split('.')[-1] == 'wav' and audio != '_desktop.ini':
audio_path = f'casia/{actor}/{label}/{audio}'
print(audio_path)
to_append = f'{actor}_{label}_{audio}'
features = extract_audio_feature(audio_path)
to_append += f' {features}'
to_append += f' {label}'
file = open('../Output/english_casia.csv', 'a', newline='')
with file:
writer = csv.writer(file)
writer.writerow(to_append.split())
if __name__ == '__main__':
preprocess_ravdess()
# preprocess_ravdess2()