opendata/20210809/main_ref.py

362 lines
22 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import pandas as pd
import json
import numpy as np
import ast
from datetime import datetime
import plotly.graph_objs as go
from plotly.offline import plot
import plotly.offline as offline
from pandas.core.indexes import interval
import re
class data_analysis:
def __init__(self, df, name = 'default') -> None:
self.name = name
self.with_successrate = [0, 1]
self.problem_num = 23
self.df = df
self.row_num = len(df)
self.df.insert(len(self.df.columns), 'ans', self.remove_str())
self.df.insert(len(self.df.columns), 'interval', self.get_interval())
self.ndf = pd.DataFrame(self.create_new_df())
self.ndf_list = self.divide_ndf()
self.group_list = self.group_by()
self.count_df_list = self.count_group()
self.addition_list, self.success_df,self.problem_num_list = self.get_addition()
# self.output_df = 0
self.output()
print('init complete')
def remove_str_per_row(self, data_per_row):
frame_list = ast.literal_eval(data_per_row)
frame_dic_list = []
for index in range(len(frame_list)):
frame_dic_list.append(json.loads(frame_list[index]))
return frame_dic_list
def remove_str(self):
ndf_ans_8_list = []
ndf_rm_frame = []
for i in range(self.row_num):
dic_temp = self.remove_str_per_row(self.df.loc[i,'task_answers'])
ndf_ans_8_list.append(dic_temp)
new_dic_list = []
for dic in dic_temp:
dic = dic['frame']
new_dic = dic
new_dic_list.append(new_dic)
ndf_rm_frame.append(new_dic_list)
return ndf_rm_frame
def get_interval(self):
interval_list = []
for i in range(len(self.df)):
interval_list.append(self.get_interval_per_row(i))
return interval_list
def get_interval_per_row(self, index):
row_data = self.df.loc[index,:]
start_time = row_data['start_time']
start_time = datetime.strptime(start_time,"%Y-%m-%dT%H:%M:%S+08:00")
expire_time = row_data['expire_time']
expire_time = datetime.strptime(expire_time,"%Y-%m-%dT%H:%M:%S+08:00")
stop_time = row_data['stop_time']
if stop_time != stop_time:
return -1
stop_time = datetime.strptime(stop_time,"%Y-%m-%dT%H:%M:%S+08:00")
total_sec = (stop_time - start_time).seconds
return total_sec
def create_new_df(self):
twoD_list = []
for row in range(self.row_num):
ans_dic_list = self.df.loc[row, 'ans']
twoD_list.append(ans_dic_list)
return twoD_list
def divide_ndf(self):
ndf_list = []
for i in range(len(self.ndf.columns)):
ndf_list.append(pd.DataFrame(self.ndf.loc[:,i]))
return ndf_list
def group_by_per_problem(self, index):
df_temp = self.ndf_list[index]
df_str_list = []
for j in range(len(df_temp)):
ndf_index_j = df_temp.iloc[j, 0]
if ndf_index_j == None:
df_str_list.append(str(None))
else:
df_str_list.append(self.content_to_str(ndf_index_j))
df_temp.insert(1, 'ans_str', df_str_list)
df_per_problom = df_temp.groupby('ans_str')
return df_per_problom
def content_to_str(self, data):
if data == None:
return str(None)
elif type(data) == type([]):
return self.data_to_str(data)
elif 'data' in data.keys():
return self.data_to_str(data['data'])
else:
return self.data_to_str(data)
def data_to_str(self, data):
if type(data) == type({}):
return str(list(data.values()))
else:
return str(data)
def group_by(self):
group_list = []
for i in range(self.problem_num):
df_temp = self.group_by_per_problem(i)
group_list.append(df_temp)
return group_list
def get_addition(self):
addition_list = []
accuracy_list = []
for i, df in enumerate(self.count_df_list):
additional_infor_df = pd.DataFrame({'list':[ast.literal_eval(index) for index in df.index]})
additional_infor_df.insert(len(additional_infor_df.columns), 'count', list( df.iloc[:, 0]))
if i in self.with_successrate:
additional_infor_df.insert(len(additional_infor_df.columns), 'success', ['0' if l==None else str(l[0]) for l in additional_infor_df.iloc[:,0] ])
accuracy_list.append(additional_infor_df.groupby('success')['count'].sum().iloc[1]/self.row_num)
elif i in [2,3]:
additional_infor_df.insert(len(additional_infor_df.columns), 'success', ['1' if l!= None and len(l)!=0 and l[0]=='00' else '0' for l in additional_infor_df.iloc[:,0] ])
accuracy_list.append(additional_infor_df.groupby('success')['count'].sum().iloc[1]/self.row_num)
elif i in [5]:
additional_infor_df.insert(len(additional_infor_df.columns), 'success', ['1' if l!= None and len(l)==2 and l[0]+l[1]=='B_AC_A' else '0' for l in additional_infor_df.iloc[:,0] ])
accuracy_list.append(additional_infor_df.groupby('success')['count'].sum().iloc[1]/self.row_num)
elif i in [6]:
additional_infor_df.insert(len(additional_infor_df.columns), 'success', ['1' if l!= None and len(l)==5 and l[0]+l[1]+l[2]+l[3]+l[4]=='B_AC_AG_FD_BE_B' else '0' for l in additional_infor_df.iloc[:,0] ])
accuracy_list.append(additional_infor_df.groupby('success')['count'].sum().iloc[1]/self.row_num)
elif i in [7]:
additional_infor_df.insert(len(additional_infor_df.columns), 'success', ['1' if l!= None and len(l)==4 and [[0,1],[0,2],[1,2]] in l and [[0,4],[0,5],[1,5]] in l and [[0,6],[0,7],[1,7]] in l and [[0,10],[0,11],[1,11]] else '0' for l in additional_infor_df.iloc[:,0] ])
accuracy_list.append(additional_infor_df.groupby('success')['count'].sum().iloc[1]/self.row_num)
elif i in [8]:
verify_list = [[[1, 0], [2, 0], [3, 0], [3, 1]], [[0, 1], [1, 1], [2, 1], [2, 2]], [[3, 2], [4, 2], [5, 2], [5, 3]], [[2, 3], [3, 3], [4, 3], [4, 4]], [[0, 4], [1, 4], [2, 4], [2, 5]]]
additional_infor_df.insert(len(additional_infor_df.columns), 'success', ['1' if l!= None and len(l)==5 and verify_list[0] in l and verify_list[1] in l and verify_list[2] in l and verify_list[3] in l and verify_list[4] in l else '0' for l in additional_infor_df.iloc[:,0] ])
accuracy_list.append(additional_infor_df.groupby('success')['count'].sum().iloc[1]/self.row_num)
elif i in [9]:
for row in range(len(additional_infor_df)):
list_temp = additional_infor_df.loc[row,'list']
if list_temp!=None and len(list_temp)==2:
if list_temp[0][0:2] > list_temp[0][-2:]:
list_temp[0] = list_temp[0][-2:] + '_' + list_temp[0][0:2]
if list_temp[1][0:2] > list_temp[1][-2:]:
list_temp[1] = list_temp[1][-2:] + '_' + list_temp[1][0:2]
if list_temp[0] > list_temp[1]:
additional_infor_df._set_value(row,'list', str([list_temp[1], list_temp[0]]))
else:
additional_infor_df._set_value(row,'list', str(list_temp))
else:
additional_infor_df._set_value(row,'list', str(list_temp))
grouped = additional_infor_df.groupby('list')['count'].sum()
additional_infor_df = pd.DataFrame({'list':[ast.literal_eval(index) for index in grouped.index]})
additional_infor_df.insert(len(additional_infor_df.columns), 'count', list( grouped.iloc[:]))
verify_list = [['02_09', '05_06'],['02_05', '06_09'],['02_06', '05_09']]
additional_infor_df.insert(len(additional_infor_df.columns), 'success', ['1' if l!= None and len(l)==2 and l in verify_list else '0' for l in additional_infor_df.iloc[:,0] ])
accuracy_list.append(additional_infor_df.groupby('success')['count'].sum().iloc[1]/self.row_num)
elif i in [10]:
for row in range(len(additional_infor_df)):
list_temp = additional_infor_df.loc[row, 'list']
if list_temp!=None:
list_temp = [[int(rebuild_i) for rebuild_i in re.findall(r"\d+", rebuild)] for rebuild in list_temp]
for list_mem in list_temp:
list_mem.sort()
list_temp.sort()
additional_infor_df._set_value(row,'list', str([str(list_str[0]) + '_' + str(list_str[1]) for list_str in list_temp]))
else:
additional_infor_df._set_value(row,'list', str(list_temp))
grouped = additional_infor_df.groupby('list')['count'].sum()
additional_infor_df = pd.DataFrame({'list':[ast.literal_eval(index) for index in grouped.index]})
additional_infor_df.insert(len(additional_infor_df.columns), 'count', list( grouped.iloc[:]))
verify_list = ['2','6','12','14','15','16']
additional_infor_df.insert(len(additional_infor_df.columns), 'success', ['1' if l!= None and len(l)==3 and len(set([re.findall(r"\d+",l[0])[0], re.findall(r"\d+",l[0])[1], re.findall(r"\d+",l[1])[0], re.findall(r"\d+",l[1])[1], re.findall(r"\d+",l[2])[0],re.findall(r"\d+",l[2])[1]]))==6 and re.findall(r"\d+",l[0])[0] in verify_list and re.findall(r"\d+",l[0])[1] in verify_list and re.findall(r"\d+",l[1])[0] in verify_list and re.findall(r"\d+",l[1])[1] in verify_list and re.findall(r"\d+",l[2])[0] in verify_list and re.findall(r"\d+",l[2])[1] in verify_list else '0' for l in additional_infor_df.iloc[:,0] ])
accuracy_list.append(additional_infor_df.groupby('success')['count'].sum().iloc[1]/self.row_num)
elif i in [11]:
for row in range(len(additional_infor_df)):
list_temp = additional_infor_df.loc[row, 'list']
if list_temp!=None:
additional_infor_df._set_value(row,'list', "".join(re.findall(r"\d+", str(list_temp))))
else:
additional_infor_df._set_value(row,'list', '')
grouped = additional_infor_df.groupby('list')['count'].sum()
additional_infor_df = pd.DataFrame({'list':[index for index in grouped.index]})
additional_infor_df.insert(len(additional_infor_df.columns), 'count', list( grouped.iloc[:]))
verify_str = '0012210224'
additional_infor_df.insert(len(additional_infor_df.columns), 'success', ['1' if l==verify_str else '0' for l in additional_infor_df.iloc[:,0] ])
accuracy_list.append(additional_infor_df.groupby('success')['count'].sum().iloc[1]/self.row_num)
elif i in [12]:
for row in range(len(additional_infor_df)):
list_temp = additional_infor_df.loc[row, 'list']
if list_temp!=None:
additional_infor_df._set_value(row,'list', "".join(re.findall(r"\d+", str(list_temp))))
else:
additional_infor_df._set_value(row,'list', '')
grouped = additional_infor_df.groupby('list')['count'].sum()
additional_infor_df = pd.DataFrame({'list':[index for index in grouped.index]})
additional_infor_df.insert(len(additional_infor_df.columns), 'count', list( grouped.iloc[:]))
verify_str = '2213110425'
additional_infor_df.insert(len(additional_infor_df.columns), 'success', ['1' if l==verify_str else '0' for l in additional_infor_df.iloc[:,0] ])
accuracy_list.append(additional_infor_df.groupby('success')['count'].sum().iloc[1]/self.row_num)
elif i in [13]:
for row in range(len(additional_infor_df)):
list_temp = additional_infor_df.loc[row, 'list']
if list_temp!=None:
additional_infor_df._set_value(row,'list', "".join(re.findall(r"\d+", str(list_temp))))
else:
additional_infor_df._set_value(row,'list', '')
grouped = additional_infor_df.groupby('list')['count'].sum()
additional_infor_df = pd.DataFrame({'list':[index for index in grouped.index]})
additional_infor_df.insert(len(additional_infor_df.columns), 'count', list( grouped.iloc[:]))
verify_str = '21'
additional_infor_df.insert(len(additional_infor_df.columns), 'success', ['1' if l==verify_str else '0' for l in additional_infor_df.iloc[:,0] ])
accuracy_list.append(additional_infor_df.groupby('success')['count'].sum().iloc[1]/self.row_num)
elif i in [14]:
for row in range(len(additional_infor_df)):
list_temp = additional_infor_df.loc[row, 'list']
if list_temp!=None:
additional_infor_df._set_value(row,'list', "".join(re.findall(r"\d+", str(list_temp))))
else:
additional_infor_df._set_value(row,'list', '')
grouped = additional_infor_df.groupby('list')['count'].sum()
additional_infor_df = pd.DataFrame({'list':[index for index in grouped.index]})
additional_infor_df.insert(len(additional_infor_df.columns), 'count', list( grouped.iloc[:]))
verify_str = '121223'
additional_infor_df.insert(len(additional_infor_df.columns), 'success', ['1' if l==verify_str else '0' for l in additional_infor_df.iloc[:,0] ])
accuracy_list.append(additional_infor_df.groupby('success')['count'].sum().iloc[1]/self.row_num)
elif i in [18]:
for row in range(len(additional_infor_df)):
list_temp = additional_infor_df.loc[row, 'list']
if list_temp!=None:
additional_infor_df._set_value(row,'list', "".join(re.findall(r"\d+", str(list_temp))))
else:
additional_infor_df._set_value(row,'list', '')
grouped = additional_infor_df.groupby('list')['count'].sum()
additional_infor_df = pd.DataFrame({'list':[index for index in grouped.index]})
additional_infor_df.insert(len(additional_infor_df.columns), 'count', list( grouped.iloc[:]))
verify_list = ['0', '2']
additional_infor_df.insert(len(additional_infor_df.columns), 'success', ['1' if len(l)==3 and l[0] in verify_list and l[1] in verify_list and l[2] in verify_list else '0' for l in additional_infor_df.iloc[:,0] ])
accuracy_list.append(additional_infor_df.groupby('success')['count'].sum().iloc[1]/self.row_num)
elif i in [19]:
for row in range(len(additional_infor_df)):
list_temp = additional_infor_df.loc[row, 'list']
if list_temp!=None:
additional_infor_df._set_value(row,'list', "".join(re.findall(r"\d+", str(list_temp))))
else:
additional_infor_df._set_value(row,'list', '')
grouped = additional_infor_df.groupby('list')['count'].sum()
additional_infor_df = pd.DataFrame({'list':[index for index in grouped.index]})
additional_infor_df.insert(len(additional_infor_df.columns), 'count', list( grouped.iloc[:]))
verify_str = '000000'
additional_infor_df.insert(len(additional_infor_df.columns), 'success', ['1' if l.replace('2','0')==verify_str else '0' for l in additional_infor_df.iloc[:,0] ])
accuracy_list.append(additional_infor_df.groupby('success')['count'].sum().iloc[1]/self.row_num)
elif i in [21]:
for row in range(len(additional_infor_df)):
list_temp = additional_infor_df.loc[row, 'list']
if list_temp!=None:
additional_infor_df._set_value(row,'list', "".join(re.findall(r"\d+", str(list_temp))))
else:
additional_infor_df._set_value(row,'list', '')
grouped = additional_infor_df.groupby('list')['count'].sum()
additional_infor_df = pd.DataFrame({'list':[index for index in grouped.index]})
additional_infor_df.insert(len(additional_infor_df.columns), 'count', list( grouped.iloc[:]))
verify_str = '1010011001'
additional_infor_df.insert(len(additional_infor_df.columns), 'success', ['1' if l==verify_str else '0' for l in additional_infor_df.iloc[:,0] ])
accuracy_list.append(additional_infor_df.groupby('success')['count'].sum().iloc[1]/self.row_num)
elif i in [22]:
for row in range(len(additional_infor_df)):
list_temp = additional_infor_df.loc[row, 'list']
if list_temp!=None:
additional_infor_df._set_value(row,'list', str(list_temp))
else:
additional_infor_df._set_value(row,'list', '')
grouped = additional_infor_df.groupby('list')['count'].sum()
additional_infor_df = pd.DataFrame({'list':[index for index in grouped.index]})
additional_infor_df.insert(len(additional_infor_df.columns), 'count', list( grouped.iloc[:]))
verify_list = ['[[0, 0, 1, 1, 0, 1, 0], [[1, 0], [0]]]','[[1, 1, 0, 0, 1, 0, 1], [[0], [1, 0]]]']
additional_infor_df.insert(len(additional_infor_df.columns), 'success', ['1' if l in verify_list else '0' for l in additional_infor_df.iloc[:,0] ])
accuracy_list.append(additional_infor_df.groupby('success')['count'].sum().iloc[1]/self.row_num)
elif i in [15]:
for row in range(len(additional_infor_df)):
list_temp = additional_infor_df.loc[row, 'list']
if list_temp!=None:
additional_infor_df._set_value(row,'list', str(list_temp))
else:
additional_infor_df._set_value(row,'list', '')
grouped = additional_infor_df.groupby('list')['count'].sum()
additional_infor_df = pd.DataFrame({'list':[index for index in grouped.index]})
additional_infor_df.insert(len(additional_infor_df.columns), 'count', list( grouped.iloc[:]))
verify_str = '[[1, 0, 1, 2], 1, 16, True]'
additional_infor_df.insert(len(additional_infor_df.columns), 'success', ['1' if l==verify_str else '0' for l in additional_infor_df.iloc[:,0] ])
accuracy_list.append(additional_infor_df.groupby('success')['count'].sum().iloc[1]/self.row_num)
addition_list.append(additional_infor_df)
pro_name_list = ['小松鼠跳柱子1', '小松鼠跳柱子2', '填充小石子1', '填充小石子2','嵌套的矩形1', '嵌套的矩形2','模式的复制1','模式的复制2','浇花1','浇花2','密码1','密码2','4进制编码1','4进制编码2','滚筒1','供水系统1','供水系统2','对应的形状1','对应的形状2']
return addition_list, pd.DataFrame({'problem_num':pro_name_list, 'accuracy': accuracy_list}),pro_name_list
def count_group(self):
count_df_list = []
for group in self.group_list:
count_df_list.append(group.count())
return count_df_list
def plot(self):
data = [go.Histogram(x=list(self.df.loc[:,'interval']))]
layout={"title": "学生用时分布",
"xaxis_title": "学生用时,单位秒",
"yaxis_title": "学生个数",
# x轴坐标倾斜60度
"xaxis": {"tickangle": 60}
}
fig = go.Figure(data=data,layout=layout)
plot(fig,filename="./plot/"+self.name+"/time.html",auto_open=False,image='png',image_height=800,image_width=1500)
# offline.iplot(fig)
return 0
def plot_problem(self):
data = [go.Bar(x = list(range(self.problem_num)), y = [len(list(group)) for group in self.group_list])]
layout={"title": "不同题目的编码数量",
"xaxis_title": "题目编号",
"yaxis_title": "编码个数",
# x轴坐标倾斜60度
"xaxis": {"tickangle": 60}
}
fig = go.Figure(data=data,layout=layout)
plot(fig,filename="./plot/"+self.name+"/plot_problem.html",auto_open=False,image='png',image_height=800,image_width=1500)
# offline.iplot(fig)
return 0
def output(self):
self.plot()
self.plot_problem()
for i, df in enumerate(self.ndf_list):
df.iloc[:, 1].to_excel('./output/' + str(self.name)+'/' +str(i) + '.xlsx')
for i, df in enumerate(self.addition_list):
df.to_excel('./output/' + str(self.name)+'/' +str(i) + '_count.xlsx')
if __name__ == '__main__':
df = pd.read_excel('./data/data.xlsx')
df_junior = pd.read_excel('./data/junior.xlsx')
df_senior = pd.read_excel('./data/senior.xlsx')
data_entity = data_analysis(df)
data_entity_junior = data_analysis(df = df_junior, name = 'junior')
data_entity_senior = data_analysis(df = df_senior, name = 'senior')