transformers/tests/test_processor_wav2vec2.py

141 lines
5.7 KiB
Python

# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
import tempfile
import unittest
from transformers.file_utils import FEATURE_EXTRACTOR_NAME
from transformers.models.wav2vec2 import Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2Processor
from transformers.models.wav2vec2.tokenization_wav2vec2 import VOCAB_FILES_NAMES
from .test_feature_extraction_wav2vec2 import floats_list
class Wav2Vec2ProcessorTest(unittest.TestCase):
def setUp(self):
vocab = "<pad> <s> </s> <unk> | E T A O N I H S R D L U M W C F G Y P B V K ' X J Q Z".split(" ")
vocab_tokens = dict(zip(vocab, range(len(vocab))))
self.add_kwargs_tokens_map = {
"pad_token": "<pad>",
"unk_token": "<unk>",
"bos_token": "<s>",
"eos_token": "</s>",
}
feature_extractor_map = {
"feature_size": 1,
"padding_value": 0.0,
"sampling_rate": 16000,
"return_attention_mask": False,
"do_normalize": True,
}
self.tmpdirname = tempfile.mkdtemp()
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.feature_extraction_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME)
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.feature_extraction_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(feature_extractor_map) + "\n")
def get_tokenizer(self, **kwargs_init):
kwargs = self.add_kwargs_tokens_map.copy()
kwargs.update(kwargs_init)
return Wav2Vec2CTCTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_feature_extractor(self, **kwargs):
return Wav2Vec2FeatureExtractor.from_pretrained(self.tmpdirname, **kwargs)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def test_save_load_pretrained_default(self):
tokenizer = self.get_tokenizer()
feature_extractor = self.get_feature_extractor()
processor = Wav2Vec2Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
processor.save_pretrained(self.tmpdirname)
processor = Wav2Vec2Processor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
self.assertIsInstance(processor.tokenizer, Wav2Vec2CTCTokenizer)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
self.assertIsInstance(processor.feature_extractor, Wav2Vec2FeatureExtractor)
def test_save_load_pretrained_additional_features(self):
processor = Wav2Vec2Processor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0)
processor = Wav2Vec2Processor.from_pretrained(
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, Wav2Vec2CTCTokenizer)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor, Wav2Vec2FeatureExtractor)
def test_feature_extractor(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = Wav2Vec2Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
raw_speech = floats_list((3, 1000))
input_feat_extract = feature_extractor(raw_speech, return_tensors="np")
input_processor = processor(raw_speech, return_tensors="np")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_tokenizer(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = Wav2Vec2Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
input_str = "This is a test string"
with processor.as_target_processor():
encoded_processor = processor(input_str)
encoded_tok = tokenizer(input_str)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
def test_tokenizer_decode(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = Wav2Vec2Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)