transformers/tests/test_modeling_tf_lxmert.py

771 lines
31 KiB
Python

# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest
from transformers import LxmertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
if is_tf_available():
import tensorflow as tf
from transformers.models.lxmert.modeling_tf_lxmert import TFLxmertForPreTraining, TFLxmertModel
class TFLxmertModelTester(object):
def __init__(
self,
parent,
vocab_size=300,
hidden_size=28,
num_attention_heads=2,
num_labels=2,
intermediate_size=64,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
num_qa_labels=30,
num_object_labels=16,
num_attr_labels=4,
num_visual_features=10,
l_layers=2,
x_layers=1,
r_layers=1,
visual_feat_dim=128,
visual_pos_dim=4,
visual_loss_normalizer=6.67,
seq_length=20,
batch_size=8,
is_training=True,
task_matched=True,
task_mask_lm=True,
task_obj_predict=True,
task_qa=True,
visual_obj_loss=True,
visual_attr_loss=True,
visual_feat_loss=True,
use_token_type_ids=True,
use_lang_mask=True,
output_attentions=False,
output_hidden_states=False,
scope=None,
):
self.parent = parent
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.num_labels = num_labels
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.pad_token_id = pad_token_id
self.num_qa_labels = num_qa_labels
self.num_object_labels = num_object_labels
self.num_attr_labels = num_attr_labels
self.l_layers = l_layers
self.x_layers = x_layers
self.r_layers = r_layers
self.visual_feat_dim = visual_feat_dim
self.visual_pos_dim = visual_pos_dim
self.visual_loss_normalizer = visual_loss_normalizer
self.seq_length = seq_length
self.batch_size = batch_size
self.is_training = is_training
self.use_lang_mask = use_lang_mask
self.task_matched = task_matched
self.task_mask_lm = task_mask_lm
self.task_obj_predict = task_obj_predict
self.task_qa = task_qa
self.visual_obj_loss = visual_obj_loss
self.visual_attr_loss = visual_attr_loss
self.visual_feat_loss = visual_feat_loss
self.num_visual_features = num_visual_features
self.use_token_type_ids = use_token_type_ids
self.output_attentions = output_attentions
self.output_hidden_states = output_hidden_states
self.scope = scope
self.num_hidden_layers = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers}
def prepare_config_and_inputs(self):
output_attentions = self.output_attentions
input_ids = ids_tensor([self.batch_size, self.seq_length], vocab_size=self.vocab_size)
visual_feats = tf.random.uniform((self.batch_size, self.num_visual_features, self.visual_feat_dim))
bounding_boxes = tf.random.uniform((self.batch_size, self.num_visual_features, 4))
input_mask = None
if self.use_lang_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
obj_labels = None
if self.task_obj_predict:
obj_labels = {}
if self.visual_attr_loss and self.task_obj_predict:
obj_labels["attr"] = (
ids_tensor([self.batch_size, self.num_visual_features], self.num_attr_labels),
ids_tensor([self.batch_size, self.num_visual_features], self.num_attr_labels),
)
if self.visual_feat_loss and self.task_obj_predict:
obj_labels["feat"] = (
ids_tensor(
[self.batch_size, self.num_visual_features, self.visual_feat_dim], self.num_visual_features
),
ids_tensor([self.batch_size, self.num_visual_features], self.num_visual_features),
)
if self.visual_obj_loss and self.task_obj_predict:
obj_labels["obj"] = (
ids_tensor([self.batch_size, self.num_visual_features], self.num_object_labels),
ids_tensor([self.batch_size, self.num_visual_features], self.num_object_labels),
)
ans = None
if self.task_qa:
ans = ids_tensor([self.batch_size], self.num_qa_labels)
masked_lm_labels = None
if self.task_mask_lm:
masked_lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
matched_label = None
if self.task_matched:
matched_label = ids_tensor([self.batch_size], self.num_labels)
config = LxmertConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_attention_heads=self.num_attention_heads,
num_labels=self.num_labels,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
layer_norm_eps=self.layer_norm_eps,
pad_token_id=self.pad_token_id,
num_qa_labels=self.num_qa_labels,
num_object_labels=self.num_object_labels,
num_attr_labels=self.num_attr_labels,
l_layers=self.l_layers,
x_layers=self.x_layers,
r_layers=self.r_layers,
visual_feat_dim=self.visual_feat_dim,
visual_pos_dim=self.visual_pos_dim,
visual_loss_normalizer=self.visual_loss_normalizer,
task_matched=self.task_matched,
task_mask_lm=self.task_mask_lm,
task_obj_predict=self.task_obj_predict,
task_qa=self.task_qa,
visual_obj_loss=self.visual_obj_loss,
visual_attr_loss=self.visual_attr_loss,
visual_feat_loss=self.visual_feat_loss,
output_attentions=self.output_attentions,
output_hidden_states=self.output_hidden_states,
)
return (
config,
input_ids,
visual_feats,
bounding_boxes,
token_type_ids,
input_mask,
obj_labels,
masked_lm_labels,
matched_label,
ans,
output_attentions,
)
def create_and_check_lxmert_model(
self,
config,
input_ids,
visual_feats,
bounding_boxes,
token_type_ids,
input_mask,
obj_labels,
masked_lm_labels,
matched_label,
ans,
output_attentions,
):
model = TFLxmertModel(config=config)
result = model(
input_ids,
visual_feats,
bounding_boxes,
token_type_ids=token_type_ids,
attention_mask=input_mask,
output_attentions=output_attentions,
)
result = model(
input_ids,
visual_feats,
bounding_boxes,
token_type_ids=token_type_ids,
attention_mask=input_mask,
output_attentions=not output_attentions,
)
result = model(input_ids, visual_feats, bounding_boxes, return_dict=False)
result = model(input_ids, visual_feats, bounding_boxes, return_dict=True)
self.parent.assertEqual(result.language_output.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(
result.vision_output.shape, (self.batch_size, self.num_visual_features, self.hidden_size)
)
self.parent.assertEqual(result.pooled_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self, return_obj_labels=False):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
visual_feats,
bounding_boxes,
token_type_ids,
input_mask,
obj_labels,
masked_lm_labels,
matched_label,
ans,
output_attentions,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"visual_feats": visual_feats,
"visual_pos": bounding_boxes,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
if return_obj_labels:
inputs_dict["obj_labels"] = obj_labels
return config, inputs_dict
def create_and_check_lxmert_for_pretraining(
self,
config,
input_ids,
visual_feats,
bounding_boxes,
token_type_ids,
input_mask,
obj_labels,
masked_lm_labels,
matched_label,
ans,
output_attentions,
):
model = TFLxmertForPreTraining(config=config)
result = model(
input_ids,
visual_feats,
bounding_boxes,
token_type_ids=token_type_ids,
attention_mask=input_mask,
masked_lm_labels=masked_lm_labels,
obj_labels=obj_labels,
matched_label=matched_label,
ans=ans,
output_attentions=output_attentions,
)
result = model(
input_ids,
visual_feats,
bounding_boxes,
token_type_ids=token_type_ids,
attention_mask=input_mask,
masked_lm_labels=masked_lm_labels,
output_attentions=not output_attentions,
return_dict=False,
)
result = model(
input_ids,
visual_feats,
bounding_boxes,
token_type_ids=token_type_ids,
attention_mask=input_mask,
masked_lm_labels=masked_lm_labels,
)
result = model(
input_ids,
visual_feats,
bounding_boxes,
token_type_ids=token_type_ids,
attention_mask=input_mask,
obj_labels=obj_labels,
)
result = model(
input_ids,
visual_feats,
bounding_boxes,
token_type_ids=token_type_ids,
attention_mask=input_mask,
matched_label=matched_label,
)
result = model(
input_ids,
visual_feats,
bounding_boxes,
token_type_ids=token_type_ids,
attention_mask=input_mask,
ans=ans,
)
result = model(
input_ids,
visual_feats,
bounding_boxes,
token_type_ids=token_type_ids,
attention_mask=input_mask,
masked_lm_labels=masked_lm_labels,
obj_labels=obj_labels,
matched_label=matched_label,
ans=ans,
output_attentions=not output_attentions,
)
self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
@require_tf
class TFLxmertModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (TFLxmertModel, TFLxmertForPreTraining) if is_tf_available() else ()
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFLxmertModelTester(self)
self.config_tester = ConfigTester(self, config_class=LxmertConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_lxmert_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lxmert_model(*config_and_inputs)
def test_lxmert_for_pretraining(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lxmert_for_pretraining(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in ["unc-nlp/lxmert-base-uncased"]:
model = TFLxmertModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
encoder_seq_length = (
self.model_tester.encoder_seq_length
if hasattr(self.model_tester, "encoder_seq_length")
else self.model_tester.seq_length
)
encoder_key_length = (
self.model_tester.key_length if hasattr(self.model_tester, "key_length") else encoder_seq_length
)
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
language_attentions, vision_attentions, cross_encoder_attentions = (outputs[-3], outputs[-2], outputs[-1])
self.assertEqual(model.config.output_hidden_states, False)
self.assertEqual(len(language_attentions), self.model_tester.num_hidden_layers["language"])
self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers["vision"])
self.assertEqual(len(cross_encoder_attentions), self.model_tester.num_hidden_layers["cross_encoder"])
attentions = [language_attentions, vision_attentions, cross_encoder_attentions]
attention_shapes = [
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
[
self.model_tester.num_attention_heads,
self.model_tester.num_visual_features,
self.model_tester.num_visual_features,
],
[self.model_tester.num_attention_heads, encoder_key_length, self.model_tester.num_visual_features],
]
for attention, attention_shape in zip(attentions, attention_shapes):
self.assertListEqual(list(attention[0].shape[-3:]), attention_shape)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
# 2 hidden states were added
self.assertEqual(out_len + 2, len(outputs))
language_attentions, vision_attentions, cross_encoder_attentions = (outputs[-3], outputs[-2], outputs[-1])
self.assertEqual(len(language_attentions), self.model_tester.num_hidden_layers["language"])
self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers["vision"])
self.assertEqual(len(cross_encoder_attentions), self.model_tester.num_hidden_layers["cross_encoder"])
attentions = [language_attentions, vision_attentions, cross_encoder_attentions]
attention_shapes = [
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
[
self.model_tester.num_attention_heads,
self.model_tester.num_visual_features,
self.model_tester.num_visual_features,
],
[self.model_tester.num_attention_heads, encoder_key_length, self.model_tester.num_visual_features],
]
for attention, attention_shape in zip(attentions, attention_shapes):
self.assertListEqual(list(attention[0].shape[-3:]), attention_shape)
def test_hidden_states_output(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_hidden_states_output(config, inputs_dict, model_class):
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
language_hidden_states, vision_hidden_states = outputs[-2], outputs[-1]
self.assertEqual(len(language_hidden_states), self.model_tester.num_hidden_layers["language"] + 1)
self.assertEqual(len(vision_hidden_states), self.model_tester.num_hidden_layers["vision"] + 1)
seq_length = self.model_tester.seq_length
num_visual_features = self.model_tester.num_visual_features
self.assertListEqual(
list(language_hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
self.assertListEqual(
list(vision_hidden_states[0].shape[-2:]),
[num_visual_features, self.model_tester.hidden_size],
)
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(config, inputs_dict, model_class)
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(config, inputs_dict, model_class)
def test_pt_tf_model_equivalence(self):
from transformers import is_torch_available
if not is_torch_available():
return
import torch
import transformers
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
return_obj_labels="PreTraining" in model_class.__name__
)
pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beginning
pt_model_class = getattr(transformers, pt_model_class_name)
config.output_hidden_states = True
config.task_obj_predict = False
tf_model = model_class(config)
pt_model = pt_model_class(config)
# Check we can load pt model in tf and vice-versa with model => model functions
tf_model = transformers.load_pytorch_model_in_tf2_model(
tf_model, pt_model, tf_inputs=self._prepare_for_class(inputs_dict, model_class)
)
pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
# Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
pt_model.eval()
# Delete obj labels as we want to compute the hidden states and not the loss
if "obj_labels" in inputs_dict:
del inputs_dict["obj_labels"]
def torch_type(key):
if key in ("visual_feats", "visual_pos"):
return torch.float32
else:
return torch.long
def recursive_numpy_convert(iterable):
return_dict = {}
for key, value in iterable.items():
if isinstance(value, dict):
return_dict[key] = recursive_numpy_convert(value)
else:
if isinstance(value, (list, tuple)):
return_dict[key] = (
torch.from_numpy(iter_value.numpy()).to(torch_type(key)) for iter_value in value
)
else:
return_dict[key] = torch.from_numpy(value.numpy()).to(torch_type(key))
return return_dict
pt_inputs_dict = recursive_numpy_convert(self._prepare_for_class(inputs_dict, model_class))
# need to rename encoder-decoder "inputs" for PyTorch
if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")
with torch.no_grad():
pto = pt_model(**pt_inputs_dict)
tfo = tf_model(self._prepare_for_class(inputs_dict, model_class), training=False)
tf_hidden_states = tfo[0].numpy()
pt_hidden_states = pto[0].numpy()
import numpy as np
tf_nans = np.copy(np.isnan(tf_hidden_states))
pt_nans = np.copy(np.isnan(pt_hidden_states))
pt_hidden_states[tf_nans] = 0
tf_hidden_states[tf_nans] = 0
pt_hidden_states[pt_nans] = 0
tf_hidden_states[pt_nans] = 0
max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states))
# Debug info (remove when fixed)
if max_diff >= 2e-2:
print("===")
print(model_class)
print(config)
print(inputs_dict)
print(pt_inputs_dict)
self.assertLessEqual(max_diff, 6e-2)
# Check we can load pt model in tf and vice-versa with checkpoint => model functions
with tempfile.TemporaryDirectory() as tmpdirname:
import os
pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
torch.save(pt_model.state_dict(), pt_checkpoint_path)
tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)
tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
tf_model.save_weights(tf_checkpoint_path)
pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)
# Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
pt_model.eval()
pt_inputs_dict = dict(
(name, torch.from_numpy(key.numpy()).to(torch.long))
for name, key in self._prepare_for_class(inputs_dict, model_class).items()
)
for key, value in pt_inputs_dict.items():
if key in ("visual_feats", "visual_pos"):
pt_inputs_dict[key] = value.to(torch.float32)
else:
pt_inputs_dict[key] = value.to(torch.long)
with torch.no_grad():
pto = pt_model(**pt_inputs_dict)
tfo = tf_model(self._prepare_for_class(inputs_dict, model_class))
tfo = tfo[0].numpy()
pto = pto[0].numpy()
tf_nans = np.copy(np.isnan(tfo))
pt_nans = np.copy(np.isnan(pto))
pto[tf_nans] = 0
tfo[tf_nans] = 0
pto[pt_nans] = 0
tfo[pt_nans] = 0
max_diff = np.amax(np.abs(tfo - pto))
self.assertLessEqual(max_diff, 6e-2)
def test_save_load(self):
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
return_obj_labels="PreTraining" in model_class.__name__
)
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname)
after_outputs = model(self._prepare_for_class(inputs_dict, model_class))
self.assert_outputs_same(after_outputs, outputs)
def test_compile_tf_model(self):
optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
return_obj_labels="PreTraining" in model_class.__name__
)
input_ids = tf.keras.Input(
batch_shape=(self.model_tester.batch_size, self.model_tester.seq_length),
name="input_ids",
dtype="int32",
)
visual_feats = tf.keras.Input(
batch_shape=(
self.model_tester.batch_size,
self.model_tester.num_visual_features,
self.model_tester.visual_feat_dim,
),
name="visual_feats",
dtype="int32",
)
visual_pos = tf.keras.Input(
batch_shape=(self.model_tester.batch_size, self.model_tester.num_visual_features, 4),
name="visual_pos",
dtype="int32",
)
# Prepare our model
model = model_class(config)
# Let's load it from the disk to be sure we can use pretrained weights
with tempfile.TemporaryDirectory() as tmpdirname:
outputs = model(self._prepare_for_class(inputs_dict, model_class)) # build the model
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname)
outputs_dict = model(input_ids, visual_feats, visual_pos)
hidden_states = outputs_dict[0]
# Add a dense layer on top to test integration with other keras modules
outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)
# Compile extended model
extended_model = tf.keras.Model(inputs=[input_ids, visual_feats, visual_pos], outputs=[outputs])
extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
list_lm_models = [TFLxmertForPreTraining]
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
if model_class in list_lm_models:
x = model.get_output_embeddings()
assert isinstance(x, tf.keras.layers.Layer)
name = model.get_bias()
assert isinstance(name, dict)
for k, v in name.items():
assert isinstance(v, tf.Variable)
else:
x = model.get_output_embeddings()
assert x is None
name = model.get_bias()
assert name is None
def test_saved_model_creation(self):
# This test is too long (>30sec) and makes fail the CI
pass
@slow
def test_saved_model_creation_extended(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
if hasattr(config, "use_cache"):
config.use_cache = True
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
for model_class in self.all_model_classes:
class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config)
num_out = len(model(class_inputs_dict))
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname, saved_model=True)
saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
model = tf.keras.models.load_model(saved_model_dir)
outputs = model(class_inputs_dict)
language_hidden_states = outputs["language_hidden_states"]
vision_hidden_states = outputs["vision_hidden_states"]
language_attentions = outputs["language_attentions"]
vision_attentions = outputs["vision_attentions"]
cross_encoder_attentions = outputs["cross_encoder_attentions"]
self.assertEqual(len(outputs), num_out)
self.assertEqual(len(language_hidden_states), self.model_tester.num_hidden_layers["language"] + 1)
self.assertEqual(len(vision_hidden_states), self.model_tester.num_hidden_layers["vision"] + 1)
seq_length = self.model_tester.seq_length
num_visual_features = self.model_tester.num_visual_features
self.assertListEqual(
list(language_hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
self.assertListEqual(
list(vision_hidden_states[0].shape[-2:]),
[num_visual_features, self.model_tester.hidden_size],
)
self.assertEqual(len(language_attentions), self.model_tester.num_hidden_layers["language"])
self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers["vision"])
self.assertEqual(len(cross_encoder_attentions), self.model_tester.num_hidden_layers["cross_encoder"])
attentions = [language_attentions, vision_attentions, cross_encoder_attentions]
attention_shapes = [
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
[
self.model_tester.num_attention_heads,
self.model_tester.num_visual_features,
self.model_tester.num_visual_features,
],
[self.model_tester.num_attention_heads, encoder_key_length, self.model_tester.num_visual_features],
]
for attention, attention_shape in zip(attentions, attention_shapes):
self.assertListEqual(list(attention[0].shape[-3:]), attention_shape)