388 lines
18 KiB
Python
388 lines
18 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
from parameterized import parameterized
|
|
|
|
from transformers import set_seed
|
|
from transformers.testing_utils import (
|
|
is_torch_available,
|
|
require_auto_gptq,
|
|
require_torch,
|
|
require_torch_gpu,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
AutoModelForCausalLM,
|
|
AutoTokenizer,
|
|
DynamicCache,
|
|
LlamaConfig,
|
|
LlamaForCausalLM,
|
|
SinkCache,
|
|
StaticCache,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
class CacheTest(unittest.TestCase):
|
|
def test_dynamic_cache_retrocompatibility(self):
|
|
"""Tests that we can convert back and forth between the legacy cache format and DynamicCache"""
|
|
legacy_cache = ()
|
|
new_cache = DynamicCache()
|
|
|
|
# Creates a new cache with 10 layers in both formats
|
|
for layer_idx in range(10):
|
|
new_key = torch.rand((2, 4, 8, 16))
|
|
new_value = torch.rand((2, 4, 8, 16))
|
|
new_cache.update(new_key, new_value, layer_idx)
|
|
legacy_cache += ((new_key, new_value),)
|
|
|
|
# Sanity check 1: they must have the same shapes
|
|
self.assertTrue(len(legacy_cache), len(new_cache))
|
|
for layer_idx in range(10):
|
|
self.assertTrue(len(legacy_cache[layer_idx]), len(legacy_cache[layer_idx]))
|
|
for key_value_idx in range(2):
|
|
self.assertTrue(
|
|
legacy_cache[layer_idx][key_value_idx].shape == new_cache[layer_idx][key_value_idx].shape
|
|
)
|
|
|
|
# Sanity check 2: we can get the sequence length in multiple ways with DynamicCache, and they return the
|
|
# expected value
|
|
self.assertTrue(legacy_cache[0][0].shape[-2] == new_cache[0][0].shape[-2] == new_cache.get_seq_length() == 8)
|
|
|
|
# Sanity check 3: they must be equal, and both support indexing
|
|
for layer_idx in range(10):
|
|
for key_value_idx in range(2):
|
|
self.assertTrue(
|
|
torch.allclose(new_cache[layer_idx][key_value_idx], legacy_cache[layer_idx][key_value_idx])
|
|
)
|
|
|
|
# Test 1: We can convert from legacy to new with no changes
|
|
from_legacy = DynamicCache.from_legacy_cache(legacy_cache)
|
|
for layer_idx in range(10):
|
|
for key_value_idx in range(2):
|
|
self.assertTrue(
|
|
torch.allclose(from_legacy[layer_idx][key_value_idx], legacy_cache[layer_idx][key_value_idx])
|
|
)
|
|
|
|
# Test 2: We can convert from new to legacy with no changes
|
|
to_legacy = new_cache.to_legacy_cache()
|
|
for layer_idx in range(10):
|
|
for key_value_idx in range(2):
|
|
self.assertTrue(
|
|
torch.allclose(to_legacy[layer_idx][key_value_idx], new_cache[layer_idx][key_value_idx])
|
|
)
|
|
|
|
def test_reorder_cache_retrocompatibility(self):
|
|
"""Tests that Cache.reorder_cache is retrocompatible with the legacy code path"""
|
|
legacy_reorder_fn = LlamaForCausalLM._reorder_cache # An example of a legacy `_reorder_cache` function
|
|
|
|
legacy_cache = ()
|
|
new_cache = DynamicCache()
|
|
|
|
# Creates a new cache with 10 layers in both formats
|
|
for layer_idx in range(10):
|
|
new_key = torch.rand((4, 4, 8, 16))
|
|
new_value = torch.rand((4, 4, 8, 16))
|
|
new_cache.update(new_key, new_value, layer_idx)
|
|
legacy_cache += ((new_key, new_value),)
|
|
|
|
# Let's create some dummy beam indices. From the shape above, it is equivalent to the case where num_beams=4
|
|
# and batch_size=1
|
|
beam_idx = torch.randint(low=0, high=4, size=(4,))
|
|
|
|
legacy_cache_reordered = legacy_reorder_fn(legacy_cache, beam_idx)
|
|
new_cache.reorder_cache(beam_idx)
|
|
|
|
# Let's check that the results are the same
|
|
for layer_idx in range(10):
|
|
for key_value_idx in range(2):
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
new_cache[layer_idx][key_value_idx], legacy_cache_reordered[layer_idx][key_value_idx]
|
|
)
|
|
)
|
|
|
|
def test_static_cache_mha_mqa_gqa(self):
|
|
"""
|
|
Tests that static cache works with multi-head attention (MHA), grouped query attention (GQA), and multi-query
|
|
attention (MQA)
|
|
"""
|
|
|
|
def _random_kvs(config):
|
|
# shape for key and values: (batch_size, num_heads, seq_len, head_dim)
|
|
random_keys = torch.rand(
|
|
(1, config.num_key_value_heads, 1, config.hidden_size // config.num_attention_heads),
|
|
device=torch_device,
|
|
)
|
|
random_values = torch.rand(
|
|
(1, config.num_key_value_heads, 1, config.hidden_size // config.num_attention_heads),
|
|
device=torch_device,
|
|
)
|
|
return random_keys, random_values
|
|
|
|
mha_config = LlamaConfig(num_attention_heads=32)
|
|
mha_static_cache = StaticCache(config=mha_config, max_batch_size=1, max_cache_len=10, device=torch_device)
|
|
cached_keys, cached_values = mha_static_cache.update(
|
|
*_random_kvs(mha_config), 0, cache_kwargs={"cache_position": torch.arange(1)}
|
|
)
|
|
self.assertTrue(cached_keys.shape == (1, 32, 10, 128))
|
|
self.assertTrue(cached_values.shape == (1, 32, 10, 128))
|
|
|
|
gqa_config = LlamaConfig(num_attention_heads=32, num_key_value_heads=4)
|
|
gqa_static_cache = StaticCache(config=gqa_config, max_batch_size=1, max_cache_len=10, device=torch_device)
|
|
cached_keys, cached_values = gqa_static_cache.update(
|
|
*_random_kvs(gqa_config), 0, cache_kwargs={"cache_position": torch.arange(1)}
|
|
)
|
|
self.assertTrue(cached_keys.shape == (1, 4, 10, 128))
|
|
self.assertTrue(cached_values.shape == (1, 4, 10, 128))
|
|
|
|
mqa_config = LlamaConfig(num_attention_heads=32, num_key_value_heads=1)
|
|
mqa_static_cache = StaticCache(config=mqa_config, max_batch_size=1, max_cache_len=10, device=torch_device)
|
|
cached_keys, cached_values = mqa_static_cache.update(
|
|
*_random_kvs(mqa_config), 0, cache_kwargs={"cache_position": torch.arange(1)}
|
|
)
|
|
self.assertTrue(cached_keys.shape == (1, 1, 10, 128))
|
|
self.assertTrue(cached_values.shape == (1, 1, 10, 128))
|
|
|
|
|
|
@require_torch_gpu
|
|
@slow
|
|
class CacheIntegrationTest(unittest.TestCase):
|
|
def test_dynamic_cache_hard(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", padding_side="left")
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"meta-llama/Llama-2-7b-hf", device_map="auto", torch_dtype=torch.float16
|
|
)
|
|
inputs = tokenizer(["Here's everything I know about cats. Cats"], return_tensors="pt").to(model.device)
|
|
|
|
# DynamicCache and the legacy cache format should be equivalent
|
|
set_seed(0)
|
|
gen_out_legacy = model.generate(**inputs, do_sample=True, max_new_tokens=256)
|
|
set_seed(0)
|
|
gen_out = model.generate(**inputs, do_sample=True, max_new_tokens=256, past_key_values=DynamicCache())
|
|
self.assertListEqual(gen_out_legacy.tolist(), gen_out.tolist())
|
|
|
|
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
|
expected_text = (
|
|
"Here's everything I know about cats. Cats are mysterious creatures. They can't talk, and they don't like "
|
|
"to be held. They don't play fetch, and they don't like to be hugged. But they do like to be petted.\n"
|
|
"Cats are also very independent. They don't like to be told what to do, and they don't like to be told "
|
|
"what to eat. They are also very territorial. They don't like to share their food or their toys.\nCats "
|
|
"are also very curious. They like to explore, and they like to play. They are also very fast. They can "
|
|
"run very fast, and they can jump very high.\nCats are also very smart. They can learn tricks, and they "
|
|
"can solve problems. They are also very playful. They like to play with toys, and they like to play with "
|
|
"other cats.\nCats are also very affectionate. They like to be petted, and they like to be held. They "
|
|
"also like to be scratched.\nCats are also very clean. They like to groom themselves, and they like to "
|
|
"clean their litter box.\nCats are also very independent. They don't"
|
|
)
|
|
self.assertEqual(decoded[0], expected_text)
|
|
|
|
def test_dynamic_cache_batched(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", padding_side="left")
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"meta-llama/Llama-2-7b-hf", device_map="auto", torch_dtype=torch.float16
|
|
)
|
|
inputs = tokenizer(["A sequence: 1, 2, 3, 4, 5", "A sequence: A, B, C"], padding=True, return_tensors="pt").to(
|
|
model.device
|
|
)
|
|
|
|
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10, past_key_values=DynamicCache())
|
|
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
|
expected_text = ["A sequence: 1, 2, 3, 4, 5, 6, 7, 8,", "A sequence: A, B, C, D, E, F, G, H"]
|
|
self.assertListEqual(decoded, expected_text)
|
|
|
|
def test_dynamic_cache_beam_search(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", padding_side="left")
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"meta-llama/Llama-2-7b-hf", device_map="auto", torch_dtype=torch.float16
|
|
)
|
|
|
|
inputs = tokenizer(["The best color is"], return_tensors="pt").to(model.device)
|
|
gen_out = model.generate(
|
|
**inputs,
|
|
do_sample=False,
|
|
max_new_tokens=20,
|
|
num_beams=2,
|
|
num_return_sequences=2,
|
|
)
|
|
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
|
expected_text = [
|
|
"The best color is the one that makes you feel good.\nThe best color is the one that makes you feel good",
|
|
"The best color is the one that suits you.\nThe best color is the one that suits you. The",
|
|
]
|
|
self.assertListEqual(decoded, expected_text)
|
|
|
|
@require_auto_gptq
|
|
def test_sink_cache_hard(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("TheBloke/LLaMa-7B-GPTQ")
|
|
model = AutoModelForCausalLM.from_pretrained("TheBloke/LLaMa-7B-GPTQ", device_map="auto")
|
|
|
|
inputs = tokenizer(["Vaswani et al. (2017) introduced the Transformers"], return_tensors="pt").to(model.device)
|
|
|
|
# Set up the SinkCache. Using a small window length to contain computational complexity. If this example is run
|
|
# without a SinkCache, the last few tokens are gibberish (ends in "of the of the of a of a of")
|
|
cache = SinkCache(window_length=508, num_sink_tokens=4)
|
|
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=3000, past_key_values=cache)
|
|
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
|
self.assertTrue(decoded[0].endswith("to perform a variety of tasks. The Transformer is a neural network"))
|
|
|
|
def test_sink_cache_iterative_prompts(self):
|
|
"""Tests that SinkCache supports more than one new token at once, when shifting the cache"""
|
|
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"HuggingFaceH4/zephyr-7b-beta", device_map="auto", torch_dtype=torch.float16
|
|
)
|
|
prompt = (
|
|
"Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences "
|
|
"and must-see attractions."
|
|
)
|
|
|
|
# Prepare generation settings
|
|
cache = SinkCache(window_length=256, num_sink_tokens=4)
|
|
input_ids = torch.tensor([], device=model.device, dtype=torch.int)
|
|
for _ in range(3):
|
|
# Tokenize the prompt with the correct chat template
|
|
chat = [{"role": "user", "content": prompt}]
|
|
tokenized_chat = tokenizer.apply_chat_template(chat, return_tensors="pt", add_generation_prompt=True).to(
|
|
model.device
|
|
)
|
|
input_ids = torch.cat((input_ids, tokenized_chat), dim=1)
|
|
|
|
# Perform the generation
|
|
gen_out = model.generate(
|
|
input_ids, do_sample=False, max_new_tokens=100, past_key_values=cache, use_cache=True
|
|
)
|
|
input_ids = gen_out
|
|
|
|
# We went well beyond the cache length
|
|
self.assertTrue(input_ids.shape[1] > cache.get_max_length() * 1.5)
|
|
|
|
# And it still produces a coherent english
|
|
decoded = tokenizer.batch_decode(input_ids, skip_special_tokens=True)
|
|
last_output = (
|
|
"<|assistant|>\nAs the sun began to set over the Pacific Ocean, I found myself standing on the shores of "
|
|
"Waikiki Beach, my heart filled with awe and wonder. I had just returned from a two-week journey to the "
|
|
"beautiful island of Hawaii, and it had been an unforgettable experience filled with cultural experiences "
|
|
"and must-see attractions that left me breathless.\n\nOne of the most memorable experiences of my trip "
|
|
"was visiting the historic district of Honolulu. Here,"
|
|
)
|
|
self.assertTrue(decoded[0].endswith(last_output))
|
|
|
|
@require_torch_gpu
|
|
@parameterized.expand(["eager", "sdpa", "flash_attention_2"])
|
|
def test_static_cache_greedy_sampling_pad_left(self, attn_implementation):
|
|
EXPECTED_GENERATION = [
|
|
"The best color is the one that complements the skin tone of the",
|
|
"We should not undermind the issues at hand.\nWe should not undermind the issues",
|
|
]
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
"NousResearch/Llama-2-7b-chat-hf", padding_side="left", pad_token="<s>"
|
|
)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"NousResearch/Llama-2-7b-chat-hf",
|
|
torch_dtype=torch.bfloat16,
|
|
attn_implementation=attn_implementation,
|
|
).to(torch_device)
|
|
inputs = tokenizer(
|
|
["The best color is", "We should not undermind the issues at hand"], padding=True, return_tensors="pt"
|
|
).to(model.device)
|
|
|
|
set_seed(0)
|
|
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
|
|
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
|
with self.subTest(f"{attn_implementation}, dynamic"):
|
|
self.assertListEqual(decoded, EXPECTED_GENERATION)
|
|
|
|
set_seed(0)
|
|
model.generation_config.cache_implementation = "static"
|
|
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
|
|
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
|
with self.subTest(f"{attn_implementation}, static, eager"):
|
|
self.assertListEqual(decoded, EXPECTED_GENERATION)
|
|
|
|
set_seed(0)
|
|
model.forward = torch.compile(model.forward)
|
|
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
|
|
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
|
with self.subTest(f"{attn_implementation}, static, compiled"):
|
|
self.assertListEqual(decoded, EXPECTED_GENERATION)
|
|
|
|
@require_torch_gpu
|
|
@parameterized.expand(["eager", "sdpa", "flash_attention_2"])
|
|
def test_static_cache_greedy_sampling_pad_right(self, attn_implementation):
|
|
EXPECTED_GENERATION = [
|
|
"The best color isЋ the one that complements the skin tone of",
|
|
"We should not undermind the issues at hand.\nWe should not undermind the issues",
|
|
]
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
"NousResearch/Llama-2-7b-chat-hf", padding_side="right", pad_token="<s>"
|
|
)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"NousResearch/Llama-2-7b-chat-hf",
|
|
torch_dtype=torch.bfloat16,
|
|
attn_implementation=attn_implementation,
|
|
).to(torch_device)
|
|
inputs = tokenizer(
|
|
["The best color is", "We should not undermind the issues at hand"], padding=True, return_tensors="pt"
|
|
).to(model.device)
|
|
|
|
set_seed(0)
|
|
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
|
|
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
|
with self.subTest(f"{attn_implementation}, dynamic"):
|
|
self.assertListEqual(decoded, EXPECTED_GENERATION)
|
|
|
|
set_seed(0)
|
|
model.generation_config.cache_implementation = "static"
|
|
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
|
|
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
|
with self.subTest(f"{attn_implementation}, static, eager"):
|
|
self.assertListEqual(decoded, EXPECTED_GENERATION)
|
|
|
|
set_seed(0)
|
|
model._forward = model.forward
|
|
compiled_forward = torch.compile(model.forward)
|
|
|
|
def compiled(func, input_ids, **kwargs):
|
|
return func(input_ids, **kwargs)
|
|
|
|
def call(input_ids, **kwargs):
|
|
if input_ids.shape[-1] == 1:
|
|
return compiled(compiled_forward, input_ids, **kwargs)
|
|
|
|
return model._forward(input_ids, **kwargs)
|
|
|
|
model.forward = call
|
|
|
|
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
|
|
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
|
with self.subTest(f"{attn_implementation}, static, compiled"):
|
|
self.assertListEqual(decoded, EXPECTED_GENERATION)
|
|
|
|
@unittest.skip("TODO @gante static cache's does not support beam search yet")
|
|
def test_static_cache_beam_search(self):
|
|
pass
|