536 lines
22 KiB
Python
536 lines
22 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
from __future__ import annotations
|
|
|
|
import inspect
|
|
import random
|
|
import unittest
|
|
|
|
from transformers import XLNetConfig, is_tf_available
|
|
from transformers.testing_utils import require_tf, slow
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_tf_available():
|
|
import tensorflow as tf
|
|
|
|
from transformers.models.xlnet.modeling_tf_xlnet import (
|
|
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFXLNetForMultipleChoice,
|
|
TFXLNetForQuestionAnsweringSimple,
|
|
TFXLNetForSequenceClassification,
|
|
TFXLNetForTokenClassification,
|
|
TFXLNetLMHeadModel,
|
|
TFXLNetModel,
|
|
)
|
|
|
|
|
|
class TFXLNetModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = 13
|
|
self.seq_length = 7
|
|
self.mem_len = 10
|
|
# self.key_len = seq_length + mem_len
|
|
self.clamp_len = -1
|
|
self.reuse_len = 15
|
|
self.is_training = True
|
|
self.use_labels = True
|
|
self.vocab_size = 99
|
|
self.cutoffs = [10, 50, 80]
|
|
self.hidden_size = 32
|
|
self.num_attention_heads = 4
|
|
self.d_inner = 128
|
|
self.num_hidden_layers = 2
|
|
self.type_sequence_label_size = 2
|
|
self.untie_r = True
|
|
self.bi_data = False
|
|
self.same_length = False
|
|
self.initializer_range = 0.05
|
|
self.seed = 1
|
|
self.type_vocab_size = 2
|
|
self.bos_token_id = 1
|
|
self.eos_token_id = 2
|
|
self.pad_token_id = 5
|
|
self.num_choices = 4
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
segment_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length], dtype=tf.float32)
|
|
|
|
input_ids_q = ids_tensor([self.batch_size, self.seq_length + 1], self.vocab_size)
|
|
perm_mask = tf.zeros((self.batch_size, self.seq_length + 1, self.seq_length), dtype=tf.float32)
|
|
perm_mask_last = tf.ones((self.batch_size, self.seq_length + 1, 1), dtype=tf.float32)
|
|
perm_mask = tf.concat([perm_mask, perm_mask_last], axis=-1)
|
|
# perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
|
|
target_mapping = tf.zeros((self.batch_size, 1, self.seq_length), dtype=tf.float32)
|
|
target_mapping_last = tf.ones((self.batch_size, 1, 1), dtype=tf.float32)
|
|
target_mapping = tf.concat([target_mapping, target_mapping_last], axis=-1)
|
|
# target_mapping[:, 0, -1] = 1.0 # predict last token
|
|
|
|
sequence_labels = None
|
|
lm_labels = None
|
|
is_impossible_labels = None
|
|
if self.use_labels:
|
|
lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32)
|
|
|
|
config = XLNetConfig(
|
|
vocab_size=self.vocab_size,
|
|
d_model=self.hidden_size,
|
|
n_head=self.num_attention_heads,
|
|
d_inner=self.d_inner,
|
|
n_layer=self.num_hidden_layers,
|
|
untie_r=self.untie_r,
|
|
mem_len=self.mem_len,
|
|
clamp_len=self.clamp_len,
|
|
same_length=self.same_length,
|
|
reuse_len=self.reuse_len,
|
|
bi_data=self.bi_data,
|
|
initializer_range=self.initializer_range,
|
|
num_labels=self.type_sequence_label_size,
|
|
bos_token_id=self.bos_token_id,
|
|
pad_token_id=self.pad_token_id,
|
|
eos_token_id=self.eos_token_id,
|
|
)
|
|
|
|
return (
|
|
config,
|
|
input_ids_1,
|
|
input_ids_2,
|
|
input_ids_q,
|
|
perm_mask,
|
|
input_mask,
|
|
target_mapping,
|
|
segment_ids,
|
|
lm_labels,
|
|
sequence_labels,
|
|
is_impossible_labels,
|
|
)
|
|
|
|
def set_seed(self):
|
|
random.seed(self.seed)
|
|
tf.random.set_seed(self.seed)
|
|
|
|
def create_and_check_xlnet_base_model(
|
|
self,
|
|
config,
|
|
input_ids_1,
|
|
input_ids_2,
|
|
input_ids_q,
|
|
perm_mask,
|
|
input_mask,
|
|
target_mapping,
|
|
segment_ids,
|
|
lm_labels,
|
|
sequence_labels,
|
|
is_impossible_labels,
|
|
):
|
|
model = TFXLNetModel(config)
|
|
|
|
inputs = {"input_ids": input_ids_1, "input_mask": input_mask, "token_type_ids": segment_ids}
|
|
result = model(inputs)
|
|
|
|
inputs = [input_ids_1, input_mask]
|
|
result = model(inputs)
|
|
|
|
config.use_mems_eval = False
|
|
model = TFXLNetModel(config)
|
|
no_mems_outputs = model(inputs)
|
|
self.parent.assertEqual(len(no_mems_outputs), 1)
|
|
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
self.parent.assertListEqual(
|
|
[mem.shape for mem in result.mems],
|
|
[(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
|
|
)
|
|
|
|
def create_and_check_xlnet_lm_head(
|
|
self,
|
|
config,
|
|
input_ids_1,
|
|
input_ids_2,
|
|
input_ids_q,
|
|
perm_mask,
|
|
input_mask,
|
|
target_mapping,
|
|
segment_ids,
|
|
lm_labels,
|
|
sequence_labels,
|
|
is_impossible_labels,
|
|
):
|
|
model = TFXLNetLMHeadModel(config)
|
|
|
|
inputs_1 = {"input_ids": input_ids_1, "token_type_ids": segment_ids}
|
|
all_logits_1, mems_1 = model(inputs_1).to_tuple()
|
|
|
|
inputs_2 = {"input_ids": input_ids_2, "mems": mems_1, "token_type_ids": segment_ids}
|
|
all_logits_2, mems_2 = model(inputs_2).to_tuple()
|
|
|
|
inputs_3 = {"input_ids": input_ids_q, "perm_mask": perm_mask, "target_mapping": target_mapping}
|
|
logits, _ = model(inputs_3).to_tuple()
|
|
|
|
self.parent.assertEqual(all_logits_1.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
self.parent.assertListEqual(
|
|
[mem.shape for mem in mems_1],
|
|
[(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
|
|
)
|
|
self.parent.assertEqual(all_logits_2.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
self.parent.assertListEqual(
|
|
[mem.shape for mem in mems_2],
|
|
[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
|
|
)
|
|
|
|
def create_and_check_xlnet_qa(
|
|
self,
|
|
config,
|
|
input_ids_1,
|
|
input_ids_2,
|
|
input_ids_q,
|
|
perm_mask,
|
|
input_mask,
|
|
target_mapping,
|
|
segment_ids,
|
|
lm_labels,
|
|
sequence_labels,
|
|
is_impossible_labels,
|
|
):
|
|
model = TFXLNetForQuestionAnsweringSimple(config)
|
|
|
|
inputs = {"input_ids": input_ids_1, "attention_mask": input_mask, "token_type_ids": segment_ids}
|
|
result = model(inputs)
|
|
|
|
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
|
|
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
|
|
self.parent.assertListEqual(
|
|
[mem.shape for mem in result.mems],
|
|
[(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
|
|
)
|
|
|
|
def create_and_check_xlnet_sequence_classif(
|
|
self,
|
|
config,
|
|
input_ids_1,
|
|
input_ids_2,
|
|
input_ids_q,
|
|
perm_mask,
|
|
input_mask,
|
|
target_mapping,
|
|
segment_ids,
|
|
lm_labels,
|
|
sequence_labels,
|
|
is_impossible_labels,
|
|
):
|
|
model = TFXLNetForSequenceClassification(config)
|
|
|
|
result = model(input_ids_1)
|
|
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
|
|
self.parent.assertListEqual(
|
|
[mem.shape for mem in result.mems],
|
|
[(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
|
|
)
|
|
|
|
def create_and_check_xlnet_for_token_classification(
|
|
self,
|
|
config,
|
|
input_ids_1,
|
|
input_ids_2,
|
|
input_ids_q,
|
|
perm_mask,
|
|
input_mask,
|
|
target_mapping,
|
|
segment_ids,
|
|
lm_labels,
|
|
sequence_labels,
|
|
is_impossible_labels,
|
|
):
|
|
config.num_labels = input_ids_1.shape[1]
|
|
model = TFXLNetForTokenClassification(config)
|
|
inputs = {
|
|
"input_ids": input_ids_1,
|
|
"attention_mask": input_mask,
|
|
# 'token_type_ids': token_type_ids
|
|
}
|
|
result = model(inputs)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, config.num_labels))
|
|
self.parent.assertListEqual(
|
|
[mem.shape for mem in result.mems],
|
|
[(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
|
|
)
|
|
|
|
def create_and_check_xlnet_for_multiple_choice(
|
|
self,
|
|
config,
|
|
input_ids_1,
|
|
input_ids_2,
|
|
input_ids_q,
|
|
perm_mask,
|
|
input_mask,
|
|
target_mapping,
|
|
segment_ids,
|
|
lm_labels,
|
|
sequence_labels,
|
|
is_impossible_labels,
|
|
):
|
|
config.num_choices = self.num_choices
|
|
model = TFXLNetForMultipleChoice(config=config)
|
|
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids_1, 1), (1, self.num_choices, 1))
|
|
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
|
|
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(segment_ids, 1), (1, self.num_choices, 1))
|
|
inputs = {
|
|
"input_ids": multiple_choice_inputs_ids,
|
|
"attention_mask": multiple_choice_input_mask,
|
|
"token_type_ids": multiple_choice_token_type_ids,
|
|
}
|
|
result = model(inputs)
|
|
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
|
|
self.parent.assertListEqual(
|
|
[mem.shape for mem in result.mems],
|
|
[(self.seq_length, self.batch_size * self.num_choices, self.hidden_size)] * self.num_hidden_layers,
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids_1,
|
|
input_ids_2,
|
|
input_ids_q,
|
|
perm_mask,
|
|
input_mask,
|
|
target_mapping,
|
|
segment_ids,
|
|
lm_labels,
|
|
sequence_labels,
|
|
is_impossible_labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids_1}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_tf
|
|
class TFXLNetModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(
|
|
TFXLNetModel,
|
|
TFXLNetLMHeadModel,
|
|
TFXLNetForSequenceClassification,
|
|
TFXLNetForTokenClassification,
|
|
TFXLNetForQuestionAnsweringSimple,
|
|
TFXLNetForMultipleChoice,
|
|
)
|
|
if is_tf_available()
|
|
else ()
|
|
)
|
|
all_generative_model_classes = (
|
|
(TFXLNetLMHeadModel,) if is_tf_available() else ()
|
|
) # TODO (PVP): Check other models whether language generation is also applicable
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": TFXLNetModel,
|
|
"question-answering": TFXLNetForQuestionAnsweringSimple,
|
|
"text-classification": TFXLNetForSequenceClassification,
|
|
"text-generation": TFXLNetLMHeadModel,
|
|
"token-classification": TFXLNetForTokenClassification,
|
|
"zero-shot": TFXLNetForSequenceClassification,
|
|
}
|
|
if is_tf_available()
|
|
else {}
|
|
)
|
|
test_head_masking = False
|
|
test_onnx = False
|
|
|
|
# Note that `TFXLNetModelTest` is not a subclass of `GenerationTesterMixin`, so no contrastive generation tests
|
|
# from there is run against `TFXLNetModel`.
|
|
@unittest.skip("XLNet has special cache mechanism and is currently not working with contrastive generation")
|
|
def test_xla_generate_contrastive(self):
|
|
super().test_xla_generate_contrastive()
|
|
|
|
# TODO: Fix the failed tests
|
|
def is_pipeline_test_to_skip(
|
|
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
|
|
):
|
|
# Exception encountered when calling layer '...'
|
|
return True
|
|
|
|
def setUp(self):
|
|
self.model_tester = TFXLNetModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=XLNetConfig, d_inner=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_xlnet_base_model(self):
|
|
self.model_tester.set_seed()
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlnet_base_model(*config_and_inputs)
|
|
|
|
def test_xlnet_lm_head(self):
|
|
self.model_tester.set_seed()
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlnet_lm_head(*config_and_inputs)
|
|
|
|
def test_xlnet_sequence_classif(self):
|
|
self.model_tester.set_seed()
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlnet_sequence_classif(*config_and_inputs)
|
|
|
|
def test_xlnet_token_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlnet_for_token_classification(*config_and_inputs)
|
|
|
|
def test_xlnet_qa(self):
|
|
self.model_tester.set_seed()
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlnet_qa(*config_and_inputs)
|
|
|
|
def test_xlnet_for_multiple_choice(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlnet_for_multiple_choice(*config_and_inputs)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
for model_name in TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
|
model = TFXLNetModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
@unittest.skip("Some of the XLNet models misbehave with flexible input shapes.")
|
|
def test_compile_tf_model(self):
|
|
pass
|
|
|
|
# overwrite since `TFXLNetLMHeadModel` doesn't cut logits/labels
|
|
def test_loss_computation(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
if getattr(model, "hf_compute_loss", None):
|
|
# The number of elements in the loss should be the same as the number of elements in the label
|
|
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
|
|
added_label = prepared_for_class[
|
|
sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True)[0]
|
|
]
|
|
expected_loss_size = added_label.shape.as_list()[:1]
|
|
|
|
# `TFXLNetLMHeadModel` doesn't cut logits/labels
|
|
# if model.__class__ in get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING):
|
|
# # if loss is causal lm loss, labels are shift, so that one label per batch
|
|
# # is cut
|
|
# loss_size = loss_size - self.model_tester.batch_size
|
|
|
|
# Test that model correctly compute the loss with kwargs
|
|
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
|
|
input_name = "input_ids" if "input_ids" in prepared_for_class else "pixel_values"
|
|
input_ids = prepared_for_class.pop(input_name)
|
|
|
|
loss = model(input_ids, **prepared_for_class)[0]
|
|
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
|
|
|
|
# Test that model correctly compute the loss with a dict
|
|
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
|
|
loss = model(prepared_for_class)[0]
|
|
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
|
|
|
|
# Test that model correctly compute the loss with a tuple
|
|
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
|
|
|
|
# Get keys that were added with the _prepare_for_class function
|
|
label_keys = prepared_for_class.keys() - inputs_dict.keys()
|
|
signature = inspect.signature(model.call).parameters
|
|
signature_names = list(signature.keys())
|
|
|
|
# Create a dictionary holding the location of the tensors in the tuple
|
|
tuple_index_mapping = {0: input_name}
|
|
for label_key in label_keys:
|
|
label_key_index = signature_names.index(label_key)
|
|
tuple_index_mapping[label_key_index] = label_key
|
|
sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
|
|
# Initialize a list with their default values, update the values and convert to a tuple
|
|
list_input = []
|
|
|
|
for name in signature_names:
|
|
if name != "kwargs":
|
|
list_input.append(signature[name].default)
|
|
|
|
for index, value in sorted_tuple_index_mapping:
|
|
list_input[index] = prepared_for_class[value]
|
|
|
|
tuple_input = tuple(list_input)
|
|
|
|
# Send to model
|
|
loss = model(tuple_input[:-1])[0]
|
|
|
|
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
|
|
|
|
|
|
@require_tf
|
|
class TFXLNetModelLanguageGenerationTest(unittest.TestCase):
|
|
@slow
|
|
def test_lm_generate_xlnet_base_cased(self):
|
|
model = TFXLNetLMHeadModel.from_pretrained("xlnet/xlnet-base-cased")
|
|
# fmt: off
|
|
input_ids = tf.convert_to_tensor(
|
|
[
|
|
[
|
|
67, 2840, 19, 18, 1484, 20, 965, 29077, 8719, 1273, 21, 45, 273, 17, 10, 15048, 28, 27511, 21, 4185, 11, 41, 2444, 9, 32, 1025, 20, 8719, 26, 23, 673, 966, 19, 29077, 20643, 27511, 20822, 20643, 19, 17, 6616, 17511, 18, 8978, 20, 18, 777, 9, 19233, 1527, 17669, 19, 24, 673, 17, 28756, 150, 12943, 4354, 153, 27, 442, 37, 45, 668, 21, 24, 256, 20, 416, 22, 2771, 4901, 9, 12943, 4354, 153, 51, 24, 3004, 21, 28142, 23, 65, 20, 18, 416, 34, 24, 2958, 22947, 9, 1177, 45, 668, 3097, 13768, 23, 103, 28, 441, 148, 48, 20522, 19, 12943, 4354, 153, 12860, 34, 18, 326, 27, 17492, 684, 21, 6709, 9, 8585, 123, 266, 19, 12943, 4354, 153, 6872, 24, 3004, 20, 18, 9225, 2198, 19, 12717, 103, 22, 401, 24, 6348, 9, 12943, 4354, 153, 1068, 2768, 2286, 19, 33, 104, 19, 176, 24, 9313, 19, 20086, 28, 45, 10292, 9, 4, 3,
|
|
]
|
|
],
|
|
dtype=tf.int32,
|
|
)
|
|
# fmt: on
|
|
|
|
# In 1991, the remains of Russian Tsar Nicholas II and his family
|
|
# (except for Alexei and Maria) are discovered.
|
|
# The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the
|
|
# remainder of the story. 1883 Western Siberia,
|
|
# a young Grigori Rasputin is asked by his father and a group of men to perform magic.
|
|
# Rasputin has a vision and denounces one of the men as a horse thief. Although his
|
|
# father initially slaps him for making such an accusation, Rasputin watches as the
|
|
# man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
|
|
# the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous,
|
|
# with people, even a bishop, begging for his blessing. """
|
|
|
|
# fmt: off
|
|
expected_output_ids = [
|
|
67, 2840, 19, 18, 1484, 20, 965, 29077, 8719, 1273, 21, 45, 273, 17, 10, 15048, 28, 27511, 21, 4185, 11, 41, 2444, 9, 32, 1025, 20, 8719, 26, 23, 673, 966, 19, 29077, 20643, 27511, 20822, 20643, 19, 17, 6616, 17511, 18, 8978, 20, 18, 777, 9, 19233, 1527, 17669, 19, 24, 673, 17, 28756, 150, 12943, 4354, 153, 27, 442, 37, 45, 668, 21, 24, 256, 20, 416, 22, 2771, 4901, 9, 12943, 4354, 153, 51, 24, 3004, 21, 28142, 23, 65, 20, 18, 416, 34, 24, 2958, 22947, 9, 1177, 45, 668, 3097, 13768, 23, 103, 28, 441, 148, 48, 20522, 19, 12943, 4354, 153, 12860, 34, 18, 326, 27, 17492, 684, 21, 6709, 9, 8585, 123, 266, 19, 12943, 4354, 153, 6872, 24, 3004, 20, 18, 9225, 2198, 19, 12717, 103, 22, 401, 24, 6348, 9, 12943, 4354, 153, 1068, 2768, 2286, 19, 33, 104, 19, 176, 24, 9313, 19, 20086, 28, 45, 10292, 9, 4, 3, 19, 12943, 4354, 153, 27, 442, 22, 2771, 4901, 9, 69, 27, 442, 22, 2771, 24, 11335, 20, 18, 9225, 2198, 9, 69, 27, 442, 22, 2771, 24, 11335, 20, 18, 9225, 2198, 9, 69, 27, 442, 22, 2771,
|
|
]
|
|
# fmt: on
|
|
# In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria)
|
|
# are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich,
|
|
# narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin
|
|
# is asked by his father and a group of men to perform magic. Rasputin has a vision and
|
|
# denounces one of the men as a horse thief. Although his father initially slaps
|
|
# him for making such an accusation, Rasputin watches as the man is chased outside and beaten.
|
|
# Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest.
|
|
# Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing.
|
|
# <sep><cls>, Rasputin is asked to perform magic. He is asked to perform a ritual of the Virgin Mary.
|
|
# He is asked to perform a ritual of the Virgin Mary. He is asked to perform
|
|
|
|
output_ids = model.generate(input_ids, max_length=200, do_sample=False)
|
|
|
|
self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)
|