1116 lines
45 KiB
Python
1116 lines
45 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import copy
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
|
|
from transformers import (
|
|
MODEL_FOR_CAUSAL_LM_MAPPING,
|
|
MODEL_FOR_MASKED_LM_MAPPING,
|
|
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
|
|
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
|
|
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
|
|
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
|
|
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
|
|
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
|
|
TapasConfig,
|
|
is_torch_available,
|
|
)
|
|
from transformers.models.auto import get_values
|
|
from transformers.testing_utils import require_tensorflow_probability, require_torch, slow, torch_device
|
|
from transformers.utils import cached_property
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
TapasForMaskedLM,
|
|
TapasForQuestionAnswering,
|
|
TapasForSequenceClassification,
|
|
TapasModel,
|
|
TapasTokenizer,
|
|
)
|
|
from transformers.models.tapas.modeling_tapas import (
|
|
IndexMap,
|
|
ProductIndexMap,
|
|
flatten,
|
|
gather,
|
|
range_index_map,
|
|
reduce_max,
|
|
reduce_mean,
|
|
reduce_sum,
|
|
)
|
|
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_12
|
|
else:
|
|
is_torch_greater_or_equal_than_1_12 = False
|
|
|
|
|
|
class TapasModelTester:
|
|
"""You can also import this e.g from .test_modeling_tapas import TapasModelTester"""
|
|
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_token_type_ids=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
initializer_range=0.02,
|
|
max_position_embeddings=512,
|
|
type_vocab_sizes=[3, 256, 256, 2, 256, 256, 10],
|
|
type_sequence_label_size=2,
|
|
positive_weight=10.0,
|
|
num_aggregation_labels=4,
|
|
num_labels=2,
|
|
aggregation_loss_importance=0.8,
|
|
use_answer_as_supervision=True,
|
|
answer_loss_importance=0.001,
|
|
use_normalized_answer_loss=False,
|
|
huber_loss_delta=25.0,
|
|
temperature=1.0,
|
|
agg_temperature=1.0,
|
|
use_gumbel_for_cells=False,
|
|
use_gumbel_for_agg=False,
|
|
average_approximation_function="ratio",
|
|
cell_selection_preference=0.5,
|
|
answer_loss_cutoff=100,
|
|
max_num_rows=64,
|
|
max_num_columns=32,
|
|
average_logits_per_cell=True,
|
|
select_one_column=True,
|
|
allow_empty_column_selection=False,
|
|
init_cell_selection_weights_to_zero=True,
|
|
reset_position_index_per_cell=True,
|
|
disable_per_token_loss=False,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_token_type_ids = use_token_type_ids
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.initializer_range = initializer_range
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_sizes = type_vocab_sizes
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.positive_weight = positive_weight
|
|
self.num_aggregation_labels = num_aggregation_labels
|
|
self.num_labels = num_labels
|
|
self.aggregation_loss_importance = aggregation_loss_importance
|
|
self.use_answer_as_supervision = use_answer_as_supervision
|
|
self.answer_loss_importance = answer_loss_importance
|
|
self.use_normalized_answer_loss = use_normalized_answer_loss
|
|
self.huber_loss_delta = huber_loss_delta
|
|
self.temperature = temperature
|
|
self.agg_temperature = agg_temperature
|
|
self.use_gumbel_for_cells = use_gumbel_for_cells
|
|
self.use_gumbel_for_agg = use_gumbel_for_agg
|
|
self.average_approximation_function = average_approximation_function
|
|
self.cell_selection_preference = cell_selection_preference
|
|
self.answer_loss_cutoff = answer_loss_cutoff
|
|
self.max_num_rows = max_num_rows
|
|
self.max_num_columns = max_num_columns
|
|
self.average_logits_per_cell = average_logits_per_cell
|
|
self.select_one_column = select_one_column
|
|
self.allow_empty_column_selection = allow_empty_column_selection
|
|
self.init_cell_selection_weights_to_zero = init_cell_selection_weights_to_zero
|
|
self.reset_position_index_per_cell = reset_position_index_per_cell
|
|
self.disable_per_token_loss = disable_per_token_loss
|
|
self.scope = scope
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).to(torch_device)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length]).to(torch_device)
|
|
|
|
token_type_ids = []
|
|
for type_vocab_size in self.type_vocab_sizes:
|
|
token_type_ids.append(ids_tensor(shape=[self.batch_size, self.seq_length], vocab_size=type_vocab_size))
|
|
token_type_ids = torch.stack(token_type_ids, dim=2).to(torch_device)
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
labels = None
|
|
numeric_values = None
|
|
numeric_values_scale = None
|
|
float_answer = None
|
|
aggregation_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size).to(torch_device)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels).to(torch_device)
|
|
labels = ids_tensor([self.batch_size, self.seq_length], vocab_size=2).to(torch_device)
|
|
numeric_values = floats_tensor([self.batch_size, self.seq_length]).to(torch_device)
|
|
numeric_values_scale = floats_tensor([self.batch_size, self.seq_length]).to(torch_device)
|
|
float_answer = floats_tensor([self.batch_size]).to(torch_device)
|
|
aggregation_labels = ids_tensor([self.batch_size], self.num_aggregation_labels).to(torch_device)
|
|
|
|
config = self.get_config()
|
|
|
|
return (
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
token_type_ids,
|
|
sequence_labels,
|
|
token_labels,
|
|
labels,
|
|
numeric_values,
|
|
numeric_values_scale,
|
|
float_answer,
|
|
aggregation_labels,
|
|
)
|
|
|
|
def get_config(self):
|
|
return TapasConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
type_vocab_sizes=self.type_vocab_sizes,
|
|
initializer_range=self.initializer_range,
|
|
positive_weight=self.positive_weight,
|
|
num_aggregation_labels=self.num_aggregation_labels,
|
|
num_labels=self.num_labels,
|
|
aggregation_loss_importance=self.aggregation_loss_importance,
|
|
use_answer_as_supervision=self.use_answer_as_supervision,
|
|
answer_loss_importance=self.answer_loss_importance,
|
|
use_normalized_answer_loss=self.use_normalized_answer_loss,
|
|
huber_loss_delta=self.huber_loss_delta,
|
|
temperature=self.temperature,
|
|
agg_temperature=self.agg_temperature,
|
|
use_gumbel_for_cells=self.use_gumbel_for_cells,
|
|
use_gumbel_for_agg=self.use_gumbel_for_agg,
|
|
average_approximation_function=self.average_approximation_function,
|
|
cell_selection_preference=self.cell_selection_preference,
|
|
answer_loss_cutoff=self.answer_loss_cutoff,
|
|
max_num_rows=self.max_num_rows,
|
|
max_num_columns=self.max_num_columns,
|
|
average_logits_per_cell=self.average_logits_per_cell,
|
|
select_one_column=self.select_one_column,
|
|
allow_empty_column_selection=self.allow_empty_column_selection,
|
|
init_cell_selection_weights_to_zero=self.init_cell_selection_weights_to_zero,
|
|
reset_position_index_per_cell=self.reset_position_index_per_cell,
|
|
disable_per_token_loss=self.disable_per_token_loss,
|
|
)
|
|
|
|
def create_and_check_model(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
token_type_ids,
|
|
sequence_labels,
|
|
token_labels,
|
|
labels,
|
|
numeric_values,
|
|
numeric_values_scale,
|
|
float_answer,
|
|
aggregation_labels,
|
|
):
|
|
model = TapasModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
|
|
result = model(input_ids, token_type_ids=token_type_ids)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
|
|
|
|
def create_and_check_for_masked_lm(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
token_type_ids,
|
|
sequence_labels,
|
|
token_labels,
|
|
labels,
|
|
numeric_values,
|
|
numeric_values_scale,
|
|
float_answer,
|
|
aggregation_labels,
|
|
):
|
|
model = TapasForMaskedLM(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
|
|
def create_and_check_for_question_answering(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
token_type_ids,
|
|
sequence_labels,
|
|
token_labels,
|
|
labels,
|
|
numeric_values,
|
|
numeric_values_scale,
|
|
float_answer,
|
|
aggregation_labels,
|
|
):
|
|
# inference: without aggregation head (SQA). Model only returns logits
|
|
sqa_config = copy.copy(config)
|
|
sqa_config.num_aggregation_labels = 0
|
|
sqa_config.use_answer_as_supervision = False
|
|
model = TapasForQuestionAnswering(config=sqa_config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(
|
|
input_ids=input_ids,
|
|
attention_mask=input_mask,
|
|
token_type_ids=token_type_ids,
|
|
)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
|
|
|
|
# inference: with aggregation head (WTQ, WikiSQL-supervised). Model returns logits and aggregation logits
|
|
model = TapasForQuestionAnswering(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(
|
|
input_ids=input_ids,
|
|
attention_mask=input_mask,
|
|
token_type_ids=token_type_ids,
|
|
)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
|
|
self.parent.assertEqual(result.logits_aggregation.shape, (self.batch_size, self.num_aggregation_labels))
|
|
|
|
# training: can happen in 3 main ways
|
|
# case 1: conversational (SQA)
|
|
model = TapasForQuestionAnswering(config=sqa_config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
token_type_ids=token_type_ids,
|
|
labels=labels,
|
|
)
|
|
self.parent.assertEqual(result.loss.shape, ())
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
|
|
|
|
# case 2: weak supervision for aggregation (WTQ)
|
|
model = TapasForQuestionAnswering(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(
|
|
input_ids=input_ids,
|
|
attention_mask=input_mask,
|
|
token_type_ids=token_type_ids,
|
|
labels=labels,
|
|
numeric_values=numeric_values,
|
|
numeric_values_scale=numeric_values_scale,
|
|
float_answer=float_answer,
|
|
)
|
|
self.parent.assertEqual(result.loss.shape, ())
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
|
|
self.parent.assertEqual(result.logits_aggregation.shape, (self.batch_size, self.num_aggregation_labels))
|
|
|
|
# case 3: strong supervision for aggregation (WikiSQL-supervised)
|
|
wikisql_config = copy.copy(config)
|
|
wikisql_config.use_answer_as_supervision = False
|
|
model = TapasForQuestionAnswering(config=wikisql_config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
token_type_ids=token_type_ids,
|
|
labels=labels,
|
|
aggregation_labels=aggregation_labels,
|
|
)
|
|
self.parent.assertEqual(result.loss.shape, ())
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
|
|
self.parent.assertEqual(result.logits_aggregation.shape, (self.batch_size, self.num_aggregation_labels))
|
|
|
|
def create_and_check_for_sequence_classification(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
token_type_ids,
|
|
sequence_labels,
|
|
token_labels,
|
|
labels,
|
|
numeric_values,
|
|
numeric_values_scale,
|
|
float_answer,
|
|
aggregation_labels,
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = TapasForSequenceClassification(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
token_type_ids,
|
|
sequence_labels,
|
|
token_labels,
|
|
labels,
|
|
numeric_values,
|
|
numeric_values_scale,
|
|
float_answer,
|
|
aggregation_labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+")
|
|
@require_torch
|
|
class TapasModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(
|
|
TapasModel,
|
|
TapasForMaskedLM,
|
|
TapasForQuestionAnswering,
|
|
TapasForSequenceClassification,
|
|
)
|
|
if is_torch_available()
|
|
else None
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": TapasModel,
|
|
"fill-mask": TapasForMaskedLM,
|
|
"table-question-answering": TapasForQuestionAnswering,
|
|
"text-classification": TapasForSequenceClassification,
|
|
"zero-shot": TapasForSequenceClassification,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
test_pruning = False
|
|
test_resize_embeddings = True
|
|
test_head_masking = False
|
|
|
|
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
|
|
inputs_dict = copy.deepcopy(inputs_dict)
|
|
if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
|
|
inputs_dict = {
|
|
k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
|
|
if isinstance(v, torch.Tensor) and v.ndim > 1
|
|
else v
|
|
for k, v in inputs_dict.items()
|
|
}
|
|
|
|
if return_labels:
|
|
if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
|
|
inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
|
|
elif model_class in get_values(MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING):
|
|
inputs_dict["labels"] = torch.zeros(
|
|
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
|
|
)
|
|
inputs_dict["aggregation_labels"] = torch.zeros(
|
|
self.model_tester.batch_size, dtype=torch.long, device=torch_device
|
|
)
|
|
inputs_dict["numeric_values"] = torch.zeros(
|
|
(self.model_tester.batch_size, self.model_tester.seq_length),
|
|
dtype=torch.float,
|
|
device=torch_device,
|
|
)
|
|
inputs_dict["numeric_values_scale"] = torch.zeros(
|
|
(self.model_tester.batch_size, self.model_tester.seq_length),
|
|
dtype=torch.float,
|
|
device=torch_device,
|
|
)
|
|
inputs_dict["float_answer"] = torch.zeros(
|
|
self.model_tester.batch_size, dtype=torch.float, device=torch_device
|
|
)
|
|
elif model_class in [
|
|
*get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
|
|
*get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING),
|
|
]:
|
|
inputs_dict["labels"] = torch.zeros(
|
|
self.model_tester.batch_size, dtype=torch.long, device=torch_device
|
|
)
|
|
elif model_class in [
|
|
*get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
|
|
*get_values(MODEL_FOR_CAUSAL_LM_MAPPING),
|
|
*get_values(MODEL_FOR_MASKED_LM_MAPPING),
|
|
*get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
|
|
]:
|
|
inputs_dict["labels"] = torch.zeros(
|
|
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
|
|
)
|
|
return inputs_dict
|
|
|
|
# TODO: Fix the failed tests
|
|
def is_pipeline_test_to_skip(
|
|
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
|
|
):
|
|
return True
|
|
|
|
def setUp(self):
|
|
self.model_tester = TapasModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=TapasConfig, dim=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_for_masked_lm(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
|
|
|
|
def test_for_question_answering(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
|
|
|
|
def test_for_sequence_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
|
|
|
|
@require_tensorflow_probability
|
|
def test_pt_tf_model_equivalence(self):
|
|
super().test_pt_tf_model_equivalence()
|
|
|
|
|
|
def prepare_tapas_single_inputs_for_inference():
|
|
# Here we prepare a single table-question pair to test TAPAS inference on:
|
|
data = {
|
|
"Footballer": ["Lionel Messi", "Cristiano Ronaldo"],
|
|
"Age": ["33", "35"],
|
|
}
|
|
queries = "Which footballer is 33 years old?"
|
|
table = pd.DataFrame.from_dict(data)
|
|
|
|
return table, queries
|
|
|
|
|
|
def prepare_tapas_batch_inputs_for_inference():
|
|
# Here we prepare a batch of 2 table-question pairs to test TAPAS inference on:
|
|
data = {
|
|
"Footballer": ["Lionel Messi", "Cristiano Ronaldo"],
|
|
"Age": ["33", "35"],
|
|
"Number of goals": ["712", "750"],
|
|
}
|
|
queries = ["Which footballer is 33 years old?", "How many goals does Ronaldo have?"]
|
|
table = pd.DataFrame.from_dict(data)
|
|
|
|
return table, queries
|
|
|
|
|
|
def prepare_tapas_batch_inputs_for_training():
|
|
# Here we prepare a DIFFERENT batch of 2 table-question pairs to test TAPAS training on:
|
|
data = {
|
|
"Footballer": ["Lionel Messi", "Cristiano Ronaldo"],
|
|
"Age": ["33", "35"],
|
|
"Number of goals": ["712", "750"],
|
|
}
|
|
queries = ["Which footballer is 33 years old?", "What's the total number of goals?"]
|
|
table = pd.DataFrame.from_dict(data)
|
|
|
|
answer_coordinates = [[(0, 0)], [(0, 2), (1, 2)]]
|
|
answer_text = [["Lionel Messi"], ["1462"]]
|
|
float_answer = [float("NaN"), float("1462")]
|
|
|
|
return table, queries, answer_coordinates, answer_text, float_answer
|
|
|
|
|
|
@unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+")
|
|
@require_torch
|
|
class TapasModelIntegrationTest(unittest.TestCase):
|
|
@cached_property
|
|
def default_tokenizer(self):
|
|
return TapasTokenizer.from_pretrained("google/tapas-base-finetuned-wtq")
|
|
|
|
@slow
|
|
def test_inference_no_head(self):
|
|
# ideally we want to test this with the weights of tapas_inter_masklm_base_reset,
|
|
# but since it's not straightforward to do this with the TF 1 implementation, we test it with
|
|
# the weights of the WTQ base model (i.e. tapas_wtq_wikisql_sqa_inter_masklm_base_reset)
|
|
model = TapasModel.from_pretrained("google/tapas-base-finetuned-wtq").to(torch_device)
|
|
|
|
tokenizer = self.default_tokenizer
|
|
table, queries = prepare_tapas_single_inputs_for_inference()
|
|
inputs = tokenizer(table=table, queries=queries, return_tensors="pt")
|
|
inputs = {k: v.to(torch_device) for k, v in inputs.items()}
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
# test the sequence output
|
|
expected_slice = torch.tensor(
|
|
[
|
|
[
|
|
[-0.141581565, -0.599805772, 0.747186482],
|
|
[-0.143664181, -0.602008104, 0.749218345],
|
|
[-0.15169853, -0.603363097, 0.741370678],
|
|
]
|
|
],
|
|
device=torch_device,
|
|
)
|
|
|
|
self.assertTrue(torch.allclose(outputs.last_hidden_state[:, :3, :3], expected_slice, atol=0.0005))
|
|
|
|
# test the pooled output
|
|
expected_slice = torch.tensor([[0.987518311, -0.970520139, -0.994303405]], device=torch_device)
|
|
|
|
self.assertTrue(torch.allclose(outputs.pooler_output[:, :3], expected_slice, atol=0.0005))
|
|
|
|
@unittest.skip(reason="Model not available yet")
|
|
def test_inference_masked_lm(self):
|
|
pass
|
|
|
|
# TapasForQuestionAnswering has 3 possible ways of being fine-tuned:
|
|
# - conversational set-up (SQA)
|
|
# - weak supervision for aggregation (WTQ, WikiSQL)
|
|
# - strong supervision for aggregation (WikiSQL-supervised)
|
|
# We test all of them:
|
|
@slow
|
|
def test_inference_question_answering_head_conversational(self):
|
|
# note that google/tapas-base-finetuned-sqa should correspond to tapas_sqa_inter_masklm_base_reset
|
|
model = TapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-sqa").to(torch_device)
|
|
|
|
tokenizer = self.default_tokenizer
|
|
table, queries = prepare_tapas_single_inputs_for_inference()
|
|
inputs = tokenizer(table=table, queries=queries, return_tensors="pt")
|
|
inputs = {k: v.to(torch_device) for k, v in inputs.items()}
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
# test the logits
|
|
logits = outputs.logits
|
|
expected_shape = torch.Size((1, 21))
|
|
self.assertEqual(logits.shape, expected_shape)
|
|
|
|
expected_tensor = torch.tensor(
|
|
[
|
|
[
|
|
-9997.22461,
|
|
-9997.22461,
|
|
-9997.22461,
|
|
-9997.22461,
|
|
-9997.22461,
|
|
-9997.22461,
|
|
-9997.22461,
|
|
-9997.22461,
|
|
-9997.22461,
|
|
-16.2628059,
|
|
-10004.082,
|
|
15.4330549,
|
|
15.4330549,
|
|
15.4330549,
|
|
-9990.42,
|
|
-16.3270779,
|
|
-16.3270779,
|
|
-16.3270779,
|
|
-16.3270779,
|
|
-16.3270779,
|
|
-10004.8506,
|
|
]
|
|
],
|
|
device=torch_device,
|
|
)
|
|
|
|
self.assertTrue(torch.allclose(logits, expected_tensor, atol=0.015))
|
|
|
|
@slow
|
|
def test_inference_question_answering_head_conversational_absolute_embeddings(self):
|
|
# note that google/tapas-small-finetuned-sqa should correspond to tapas_sqa_inter_masklm_small_reset
|
|
# however here we test the version with absolute position embeddings
|
|
model = TapasForQuestionAnswering.from_pretrained("google/tapas-small-finetuned-sqa", revision="no_reset").to(
|
|
torch_device
|
|
)
|
|
|
|
tokenizer = self.default_tokenizer
|
|
table, queries = prepare_tapas_single_inputs_for_inference()
|
|
inputs = tokenizer(table=table, queries=queries, return_tensors="pt")
|
|
inputs = {k: v.to(torch_device) for k, v in inputs.items()}
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
# test the logits
|
|
logits = outputs.logits
|
|
expected_shape = torch.Size((1, 21))
|
|
self.assertEqual(logits.shape, expected_shape)
|
|
|
|
expected_tensor = torch.tensor(
|
|
[
|
|
[
|
|
-10014.7793,
|
|
-10014.7793,
|
|
-10014.7793,
|
|
-10014.7793,
|
|
-10014.7793,
|
|
-10014.7793,
|
|
-10014.7793,
|
|
-10014.7793,
|
|
-10014.7793,
|
|
-18.8419304,
|
|
-10018.0391,
|
|
17.7848816,
|
|
17.7848816,
|
|
17.7848816,
|
|
-9981.02832,
|
|
-16.4005489,
|
|
-16.4005489,
|
|
-16.4005489,
|
|
-16.4005489,
|
|
-16.4005489,
|
|
-10013.4736,
|
|
]
|
|
],
|
|
device=torch_device,
|
|
)
|
|
|
|
self.assertTrue(torch.allclose(logits, expected_tensor, atol=0.01))
|
|
|
|
@slow
|
|
def test_inference_question_answering_head_weak_supervision(self):
|
|
# note that google/tapas-base-finetuned-wtq should correspond to tapas_wtq_wikisql_sqa_inter_masklm_base_reset
|
|
model = TapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq").to(torch_device)
|
|
|
|
tokenizer = self.default_tokenizer
|
|
# let's test on a batch
|
|
table, queries = prepare_tapas_batch_inputs_for_inference()
|
|
inputs = tokenizer(table=table, queries=queries, padding="longest", return_tensors="pt")
|
|
inputs_on_device = {k: v.to(torch_device) for k, v in inputs.items()}
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs_on_device)
|
|
# test the logits
|
|
logits = outputs.logits
|
|
expected_shape = torch.Size((2, 28))
|
|
self.assertEqual(logits.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor(
|
|
[
|
|
[-160.375504, -160.375504, -160.375504, -10072.3965, -10070.9414, -10094.9736],
|
|
[-9861.6123, -9861.6123, -9861.6123, -9861.6123, -9891.01172, 146.600677],
|
|
],
|
|
device=torch_device,
|
|
)
|
|
|
|
self.assertTrue(torch.allclose(logits[:, -6:], expected_slice, atol=0.4))
|
|
|
|
# test the aggregation logits
|
|
logits_aggregation = outputs.logits_aggregation
|
|
expected_shape = torch.Size((2, 4))
|
|
self.assertEqual(logits_aggregation.shape, expected_shape)
|
|
expected_tensor = torch.tensor(
|
|
[[18.8545208, -9.76614857, -6.3128891, -2.93525243], [-4.05782509, 40.0351, -5.35329962, 23.3978653]],
|
|
device=torch_device,
|
|
)
|
|
|
|
self.assertTrue(torch.allclose(logits_aggregation, expected_tensor, atol=0.001))
|
|
|
|
# test the predicted answer coordinates and aggregation indices
|
|
EXPECTED_PREDICTED_ANSWER_COORDINATES = [[(0, 0)], [(1, 2)]]
|
|
EXPECTED_PREDICTED_AGGREGATION_INDICES = [0, 1]
|
|
|
|
predicted_answer_coordinates, predicted_aggregation_indices = tokenizer.convert_logits_to_predictions(
|
|
inputs, outputs.logits.detach().cpu(), outputs.logits_aggregation.detach().cpu()
|
|
)
|
|
|
|
self.assertEqual(EXPECTED_PREDICTED_ANSWER_COORDINATES, predicted_answer_coordinates)
|
|
self.assertEqual(EXPECTED_PREDICTED_AGGREGATION_INDICES, predicted_aggregation_indices)
|
|
|
|
@slow
|
|
def test_training_question_answering_head_weak_supervision(self):
|
|
# note that google/tapas-base-finetuned-wtq should correspond to tapas_wtq_wikisql_sqa_inter_masklm_base_reset
|
|
model = TapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq").to(torch_device)
|
|
model.to(torch_device)
|
|
# normally we should put the model in training mode but it's a pain to do this with the TF 1 implementation
|
|
|
|
tokenizer = self.default_tokenizer
|
|
# let's test on a batch
|
|
table, queries, answer_coordinates, answer_text, float_answer = prepare_tapas_batch_inputs_for_training()
|
|
inputs = tokenizer(
|
|
table=table,
|
|
queries=queries,
|
|
answer_coordinates=answer_coordinates,
|
|
answer_text=answer_text,
|
|
padding="longest",
|
|
return_tensors="pt",
|
|
)
|
|
|
|
# prepare data (created by the tokenizer) and move to torch_device
|
|
input_ids = inputs["input_ids"].to(torch_device)
|
|
attention_mask = inputs["attention_mask"].to(torch_device)
|
|
token_type_ids = inputs["token_type_ids"].to(torch_device)
|
|
labels = inputs["labels"].to(torch_device)
|
|
numeric_values = inputs["numeric_values"].to(torch_device)
|
|
numeric_values_scale = inputs["numeric_values_scale"].to(torch_device)
|
|
|
|
# the answer should be prepared by the user
|
|
float_answer = torch.FloatTensor(float_answer).to(torch_device)
|
|
|
|
# forward pass to get loss + logits:
|
|
with torch.no_grad():
|
|
outputs = model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
labels=labels,
|
|
numeric_values=numeric_values,
|
|
numeric_values_scale=numeric_values_scale,
|
|
float_answer=float_answer,
|
|
)
|
|
|
|
# test the loss
|
|
loss = outputs.loss
|
|
expected_loss = torch.tensor(3.3527612686157227e-08, device=torch_device)
|
|
self.assertTrue(torch.allclose(loss, expected_loss, atol=1e-6))
|
|
|
|
# test the logits on the first example
|
|
logits = outputs.logits
|
|
expected_shape = torch.Size((2, 29))
|
|
self.assertEqual(logits.shape, expected_shape)
|
|
expected_slice = torch.tensor(
|
|
[
|
|
-160.0156,
|
|
-160.0156,
|
|
-160.0156,
|
|
-160.0156,
|
|
-160.0156,
|
|
-10072.2266,
|
|
-10070.8896,
|
|
-10092.6006,
|
|
-10092.6006,
|
|
],
|
|
device=torch_device,
|
|
)
|
|
|
|
self.assertTrue(torch.allclose(logits[0, -9:], expected_slice, atol=1e-6))
|
|
|
|
# test the aggregation logits on the second example
|
|
logits_aggregation = outputs.logits_aggregation
|
|
expected_shape = torch.Size((2, 4))
|
|
self.assertEqual(logits_aggregation.shape, expected_shape)
|
|
expected_slice = torch.tensor([-4.0538, 40.0304, -5.3554, 23.3965], device=torch_device)
|
|
|
|
self.assertTrue(torch.allclose(logits_aggregation[1, -4:], expected_slice, atol=1e-4))
|
|
|
|
@slow
|
|
def test_inference_question_answering_head_strong_supervision(self):
|
|
# note that google/tapas-base-finetuned-wikisql-supervised should correspond to tapas_wikisql_sqa_inter_masklm_base_reset
|
|
model = TapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wikisql-supervised").to(
|
|
torch_device
|
|
)
|
|
|
|
tokenizer = self.default_tokenizer
|
|
table, queries = prepare_tapas_single_inputs_for_inference()
|
|
inputs = tokenizer(table=table, queries=queries, return_tensors="pt")
|
|
inputs = {k: v.to(torch_device) for k, v in inputs.items()}
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
# test the logits
|
|
logits = outputs.logits
|
|
expected_shape = torch.Size((1, 21))
|
|
self.assertEqual(logits.shape, expected_shape)
|
|
expected_tensor = torch.tensor(
|
|
[
|
|
[
|
|
-10011.1084,
|
|
-10011.1084,
|
|
-10011.1084,
|
|
-10011.1084,
|
|
-10011.1084,
|
|
-10011.1084,
|
|
-10011.1084,
|
|
-10011.1084,
|
|
-10011.1084,
|
|
-18.6185989,
|
|
-10008.7969,
|
|
17.6355762,
|
|
17.6355762,
|
|
17.6355762,
|
|
-10002.4404,
|
|
-18.7111301,
|
|
-18.7111301,
|
|
-18.7111301,
|
|
-18.7111301,
|
|
-18.7111301,
|
|
-10007.0977,
|
|
]
|
|
],
|
|
device=torch_device,
|
|
)
|
|
|
|
self.assertTrue(torch.allclose(logits, expected_tensor, atol=0.02))
|
|
|
|
# test the aggregation logits
|
|
logits_aggregation = outputs.logits_aggregation
|
|
expected_shape = torch.Size((1, 4))
|
|
self.assertEqual(logits_aggregation.shape, expected_shape)
|
|
expected_tensor = torch.tensor(
|
|
[[16.5659733, -3.06624889, -2.34152961, -0.970244825]], device=torch_device
|
|
) # PyTorch model outputs [[16.5679, -3.0668, -2.3442, -0.9674]]
|
|
|
|
self.assertTrue(torch.allclose(logits_aggregation, expected_tensor, atol=0.003))
|
|
|
|
@slow
|
|
def test_inference_classification_head(self):
|
|
# note that google/tapas-base-finetuned-tabfact should correspond to tapas_tabfact_inter_masklm_base_reset
|
|
model = TapasForSequenceClassification.from_pretrained("google/tapas-base-finetuned-tabfact").to(torch_device)
|
|
|
|
tokenizer = self.default_tokenizer
|
|
table, queries = prepare_tapas_single_inputs_for_inference()
|
|
inputs = tokenizer(table=table, queries=queries, padding="longest", return_tensors="pt")
|
|
inputs = {k: v.to(torch_device) for k, v in inputs.items()}
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
|
|
# test the classification logits
|
|
logits = outputs.logits
|
|
expected_shape = torch.Size((1, 2))
|
|
self.assertEqual(logits.shape, expected_shape)
|
|
expected_tensor = torch.tensor(
|
|
[[0.795137286, 9.5572]], device=torch_device
|
|
) # Note that the PyTorch model outputs [[0.8057, 9.5281]]
|
|
|
|
self.assertTrue(torch.allclose(outputs.logits, expected_tensor, atol=0.05))
|
|
|
|
|
|
# Below: tests for Tapas utilities which are defined in modeling_tapas.py.
|
|
# These are based on segmented_tensor_test.py of the original implementation.
|
|
# URL: https://github.com/google-research/tapas/blob/master/tapas/models/segmented_tensor_test.py
|
|
@unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+")
|
|
@require_torch
|
|
class TapasUtilitiesTest(unittest.TestCase):
|
|
def _prepare_tables(self):
|
|
"""Prepares two tables, both with three distinct rows.
|
|
The first table has two columns:
|
|
1.0, 2.0 | 3.0
|
|
2.0, 0.0 | 1.0
|
|
1.0, 3.0 | 4.0
|
|
The second table has three columns:
|
|
1.0 | 2.0 | 3.0
|
|
2.0 | 0.0 | 1.0
|
|
1.0 | 3.0 | 4.0
|
|
Returns:
|
|
SegmentedTensors with the tables.
|
|
"""
|
|
values = torch.tensor(
|
|
[
|
|
[[1.0, 2.0, 3.0], [2.0, 0.0, 1.0], [1.0, 3.0, 4.0]],
|
|
[[1.0, 2.0, 3.0], [2.0, 0.0, 1.0], [1.0, 3.0, 4.0]],
|
|
]
|
|
)
|
|
row_index = IndexMap(
|
|
indices=torch.tensor(
|
|
[
|
|
[[0, 0, 0], [1, 1, 1], [2, 2, 2]],
|
|
[[0, 0, 0], [1, 1, 1], [2, 2, 2]],
|
|
]
|
|
),
|
|
num_segments=3,
|
|
batch_dims=1,
|
|
)
|
|
col_index = IndexMap(
|
|
indices=torch.tensor(
|
|
[
|
|
[[0, 0, 1], [0, 0, 1], [0, 0, 1]],
|
|
[[0, 1, 2], [0, 1, 2], [0, 1, 2]],
|
|
]
|
|
),
|
|
num_segments=3,
|
|
batch_dims=1,
|
|
)
|
|
return values, row_index, col_index
|
|
|
|
def test_product_index(self):
|
|
_, row_index, col_index = self._prepare_tables()
|
|
cell_index = ProductIndexMap(row_index, col_index)
|
|
row_index_proj = cell_index.project_outer(cell_index)
|
|
col_index_proj = cell_index.project_inner(cell_index)
|
|
|
|
ind = cell_index.indices
|
|
self.assertEqual(cell_index.num_segments, 9)
|
|
|
|
# Projections should give back the original indices.
|
|
# we use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
|
|
np.testing.assert_array_equal(row_index.indices.numpy(), row_index_proj.indices.numpy())
|
|
self.assertEqual(row_index.num_segments, row_index_proj.num_segments)
|
|
self.assertEqual(row_index.batch_dims, row_index_proj.batch_dims)
|
|
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
|
|
np.testing.assert_array_equal(col_index.indices.numpy(), col_index_proj.indices.numpy())
|
|
self.assertEqual(col_index.batch_dims, col_index_proj.batch_dims)
|
|
|
|
# The first and second "column" are identified in the first table.
|
|
for i in range(3):
|
|
self.assertEqual(ind[0, i, 0], ind[0, i, 1])
|
|
self.assertNotEqual(ind[0, i, 0], ind[0, i, 2])
|
|
|
|
# All rows are distinct in the first table.
|
|
for i, i_2 in zip(range(3), range(3)):
|
|
for j, j_2 in zip(range(3), range(3)):
|
|
if i != i_2 and j != j_2:
|
|
self.assertNotEqual(ind[0, i, j], ind[0, i_2, j_2])
|
|
|
|
# All cells are distinct in the second table.
|
|
for i, i_2 in zip(range(3), range(3)):
|
|
for j, j_2 in zip(range(3), range(3)):
|
|
if i != i_2 or j != j_2:
|
|
self.assertNotEqual(ind[1, i, j], ind[1, i_2, j_2])
|
|
|
|
def test_flatten(self):
|
|
_, row_index, col_index = self._prepare_tables()
|
|
row_index_flat = flatten(row_index)
|
|
col_index_flat = flatten(col_index)
|
|
|
|
shape = [3, 4, 5]
|
|
batched_index = IndexMap(indices=torch.zeros(shape).type(torch.LongTensor), num_segments=1, batch_dims=3)
|
|
batched_index_flat = flatten(batched_index)
|
|
|
|
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
|
|
np.testing.assert_array_equal(
|
|
row_index_flat.indices.numpy(), [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5]
|
|
)
|
|
np.testing.assert_array_equal(
|
|
col_index_flat.indices.numpy(), [0, 0, 1, 0, 0, 1, 0, 0, 1, 3, 4, 5, 3, 4, 5, 3, 4, 5]
|
|
)
|
|
self.assertEqual(batched_index_flat.num_segments.numpy(), np.prod(shape))
|
|
np.testing.assert_array_equal(batched_index_flat.indices.numpy(), range(np.prod(shape)))
|
|
|
|
def test_range_index_map(self):
|
|
batch_shape = [3, 4]
|
|
num_segments = 5
|
|
index = range_index_map(batch_shape, num_segments)
|
|
|
|
self.assertEqual(num_segments, index.num_segments)
|
|
self.assertEqual(2, index.batch_dims)
|
|
indices = index.indices
|
|
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
|
|
np.testing.assert_array_equal(list(indices.size()), [3, 4, 5])
|
|
for i in range(batch_shape[0]):
|
|
for j in range(batch_shape[1]):
|
|
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
|
|
np.testing.assert_array_equal(indices[i, j, :].numpy(), range(num_segments))
|
|
|
|
def test_reduce_sum(self):
|
|
values, row_index, col_index = self._prepare_tables()
|
|
cell_index = ProductIndexMap(row_index, col_index)
|
|
row_sum, _ = reduce_sum(values, row_index)
|
|
col_sum, _ = reduce_sum(values, col_index)
|
|
cell_sum, _ = reduce_sum(values, cell_index)
|
|
|
|
# We use np.testing.assert_allclose rather than Tensorflow's assertAllClose
|
|
np.testing.assert_allclose(row_sum.numpy(), [[6.0, 3.0, 8.0], [6.0, 3.0, 8.0]])
|
|
np.testing.assert_allclose(col_sum.numpy(), [[9.0, 8.0, 0.0], [4.0, 5.0, 8.0]])
|
|
np.testing.assert_allclose(
|
|
cell_sum.numpy(),
|
|
[[3.0, 3.0, 0.0, 2.0, 1.0, 0.0, 4.0, 4.0, 0.0], [1.0, 2.0, 3.0, 2.0, 0.0, 1.0, 1.0, 3.0, 4.0]],
|
|
)
|
|
|
|
def test_reduce_mean(self):
|
|
values, row_index, col_index = self._prepare_tables()
|
|
cell_index = ProductIndexMap(row_index, col_index)
|
|
row_mean, _ = reduce_mean(values, row_index)
|
|
col_mean, _ = reduce_mean(values, col_index)
|
|
cell_mean, _ = reduce_mean(values, cell_index)
|
|
|
|
# We use np.testing.assert_allclose rather than Tensorflow's assertAllClose
|
|
np.testing.assert_allclose(
|
|
row_mean.numpy(), [[6.0 / 3.0, 3.0 / 3.0, 8.0 / 3.0], [6.0 / 3.0, 3.0 / 3.0, 8.0 / 3.0]]
|
|
)
|
|
np.testing.assert_allclose(col_mean.numpy(), [[9.0 / 6.0, 8.0 / 3.0, 0.0], [4.0 / 3.0, 5.0 / 3.0, 8.0 / 3.0]])
|
|
np.testing.assert_allclose(
|
|
cell_mean.numpy(),
|
|
[
|
|
[3.0 / 2.0, 3.0, 0.0, 2.0 / 2.0, 1.0, 0.0, 4.0 / 2.0, 4.0, 0.0],
|
|
[1.0, 2.0, 3.0, 2.0, 0.0, 1.0, 1.0, 3.0, 4.0],
|
|
],
|
|
)
|
|
|
|
def test_reduce_max(self):
|
|
values = torch.as_tensor([2.0, 1.0, 0.0, 3.0])
|
|
index = IndexMap(indices=torch.as_tensor([0, 1, 0, 1]), num_segments=2)
|
|
maximum, _ = reduce_max(values, index)
|
|
|
|
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
|
|
np.testing.assert_array_equal(maximum.numpy(), [2, 3])
|
|
|
|
def test_reduce_sum_vectorized(self):
|
|
values = torch.as_tensor([[1.0, 2.0, 3.0], [2.0, 3.0, 4.0], [3.0, 4.0, 5.0]])
|
|
index = IndexMap(indices=torch.as_tensor([[0, 0, 1]]), num_segments=2, batch_dims=0)
|
|
sums, new_index = reduce_sum(values, index)
|
|
|
|
# We use np.testing.assert_allclose rather than Tensorflow's assertAllClose
|
|
np.testing.assert_allclose(sums.numpy(), [3.0, 3.0])
|
|
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
|
|
np.testing.assert_array_equal(new_index.indices.numpy(), [0, 1])
|
|
np.testing.assert_array_equal(new_index.num_segments.numpy(), 2)
|
|
np.testing.assert_array_equal(new_index.batch_dims, 0)
|
|
|
|
def test_gather(self):
|
|
values, row_index, col_index = self._prepare_tables()
|
|
cell_index = ProductIndexMap(row_index, col_index)
|
|
|
|
# Compute sums and then gather. The result should have the same shape as
|
|
# the original table and each element should contain the sum the values in
|
|
# its cell.
|
|
sums, _ = reduce_sum(values, cell_index)
|
|
cell_sum = gather(sums, cell_index)
|
|
assert cell_sum.size() == values.size()
|
|
|
|
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
|
|
np.testing.assert_allclose(
|
|
cell_sum.numpy(),
|
|
[[[3.0, 3.0, 3.0], [2.0, 2.0, 1.0], [4.0, 4.0, 4.0]], [[1.0, 2.0, 3.0], [2.0, 0.0, 1.0], [1.0, 3.0, 4.0]]],
|
|
)
|
|
|
|
def test_gather_vectorized(self):
|
|
values = torch.as_tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
|
|
index = IndexMap(indices=torch.as_tensor([[0, 1], [1, 0]]), num_segments=2, batch_dims=1)
|
|
result = gather(values, index)
|
|
|
|
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
|
|
np.testing.assert_array_equal(result.numpy(), [[[1, 2], [3, 4]], [[7, 8], [5, 6]]])
|