497 lines
20 KiB
Python
497 lines
20 KiB
Python
# coding=utf-8
|
||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
""" Testing suite for the PyTorch StableLm model. """
|
||
|
||
|
||
import unittest
|
||
|
||
from parameterized import parameterized
|
||
|
||
from transformers import StableLmConfig, is_torch_available, set_seed
|
||
from transformers.testing_utils import (
|
||
require_bitsandbytes,
|
||
require_flash_attn,
|
||
require_torch,
|
||
require_torch_sdpa,
|
||
slow,
|
||
torch_device,
|
||
)
|
||
|
||
from ...generation.test_utils import GenerationTesterMixin
|
||
from ...test_configuration_common import ConfigTester
|
||
from ...test_modeling_common import ModelTesterMixin, ids_tensor
|
||
from ...test_pipeline_mixin import PipelineTesterMixin
|
||
|
||
|
||
if is_torch_available():
|
||
import torch
|
||
|
||
from transformers import (
|
||
AutoTokenizer,
|
||
StableLmForCausalLM,
|
||
StableLmForSequenceClassification,
|
||
StableLmModel,
|
||
)
|
||
|
||
|
||
# Copied from transformers.tests.models.persimmon.test_modeling_persimmon.PersimmonModelTester with Persimmon -> StableLm
|
||
class StableLmModelTester:
|
||
# Ignore copy
|
||
def __init__(
|
||
self,
|
||
parent,
|
||
batch_size=13,
|
||
seq_length=7,
|
||
is_training=True,
|
||
use_input_mask=True,
|
||
use_token_type_ids=False,
|
||
use_labels=True,
|
||
vocab_size=99,
|
||
hidden_size=64,
|
||
num_hidden_layers=2,
|
||
num_attention_heads=4,
|
||
num_key_value_heads=4,
|
||
intermediate_size=37,
|
||
hidden_act="gelu",
|
||
hidden_dropout_prob=0.1,
|
||
attention_probs_dropout_prob=0.1,
|
||
max_position_embeddings=512,
|
||
type_vocab_size=16,
|
||
type_sequence_label_size=2,
|
||
initializer_range=0.02,
|
||
num_labels=3,
|
||
num_choices=4,
|
||
pad_token_id=0,
|
||
scope=None,
|
||
):
|
||
self.parent = parent
|
||
self.batch_size = batch_size
|
||
self.seq_length = seq_length
|
||
self.is_training = is_training
|
||
self.use_input_mask = use_input_mask
|
||
self.use_token_type_ids = use_token_type_ids
|
||
self.use_labels = use_labels
|
||
self.vocab_size = vocab_size
|
||
self.hidden_size = hidden_size
|
||
self.num_hidden_layers = num_hidden_layers
|
||
self.num_attention_heads = num_attention_heads
|
||
self.num_key_value_heads = num_key_value_heads
|
||
self.intermediate_size = intermediate_size
|
||
self.hidden_act = hidden_act
|
||
self.hidden_dropout_prob = hidden_dropout_prob
|
||
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||
self.max_position_embeddings = max_position_embeddings
|
||
self.type_vocab_size = type_vocab_size
|
||
self.type_sequence_label_size = type_sequence_label_size
|
||
self.initializer_range = initializer_range
|
||
self.num_labels = num_labels
|
||
self.num_choices = num_choices
|
||
self.pad_token_id = pad_token_id
|
||
self.scope = scope
|
||
|
||
def prepare_config_and_inputs(self):
|
||
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||
|
||
input_mask = None
|
||
if self.use_input_mask:
|
||
input_mask = torch.tril(torch.ones(self.batch_size, self.seq_length)).to(torch_device)
|
||
|
||
token_type_ids = None
|
||
if self.use_token_type_ids:
|
||
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
||
|
||
sequence_labels = None
|
||
token_labels = None
|
||
choice_labels = None
|
||
if self.use_labels:
|
||
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
||
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
||
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
||
|
||
config = self.get_config()
|
||
|
||
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||
|
||
def get_config(self):
|
||
return StableLmConfig(
|
||
vocab_size=self.vocab_size,
|
||
hidden_size=self.hidden_size,
|
||
num_hidden_layers=self.num_hidden_layers,
|
||
num_attention_heads=self.num_attention_heads,
|
||
num_key_value_heads=self.num_key_value_heads,
|
||
intermediate_size=self.intermediate_size,
|
||
hidden_act=self.hidden_act,
|
||
hidden_dropout_prob=self.hidden_dropout_prob,
|
||
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
||
max_position_embeddings=self.max_position_embeddings,
|
||
type_vocab_size=self.type_vocab_size,
|
||
is_decoder=False,
|
||
initializer_range=self.initializer_range,
|
||
pad_token_id=self.pad_token_id,
|
||
)
|
||
|
||
def create_and_check_model(
|
||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||
):
|
||
model = StableLmModel(config=config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
result = model(input_ids, attention_mask=input_mask)
|
||
result = model(input_ids)
|
||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||
|
||
def create_and_check_model_as_decoder(
|
||
self,
|
||
config,
|
||
input_ids,
|
||
token_type_ids,
|
||
input_mask,
|
||
sequence_labels,
|
||
token_labels,
|
||
choice_labels,
|
||
encoder_hidden_states,
|
||
encoder_attention_mask,
|
||
):
|
||
config.add_cross_attention = True
|
||
model = StableLmModel(config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
result = model(
|
||
input_ids,
|
||
attention_mask=input_mask,
|
||
encoder_hidden_states=encoder_hidden_states,
|
||
encoder_attention_mask=encoder_attention_mask,
|
||
)
|
||
result = model(
|
||
input_ids,
|
||
attention_mask=input_mask,
|
||
encoder_hidden_states=encoder_hidden_states,
|
||
)
|
||
result = model(input_ids, attention_mask=input_mask)
|
||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||
|
||
def create_and_check_for_causal_lm(
|
||
self,
|
||
config,
|
||
input_ids,
|
||
token_type_ids,
|
||
input_mask,
|
||
sequence_labels,
|
||
token_labels,
|
||
choice_labels,
|
||
encoder_hidden_states,
|
||
encoder_attention_mask,
|
||
):
|
||
model = StableLmForCausalLM(config=config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||
|
||
def create_and_check_decoder_model_past_large_inputs(
|
||
self,
|
||
config,
|
||
input_ids,
|
||
token_type_ids,
|
||
input_mask,
|
||
sequence_labels,
|
||
token_labels,
|
||
choice_labels,
|
||
encoder_hidden_states,
|
||
encoder_attention_mask,
|
||
):
|
||
config.is_decoder = True
|
||
config.add_cross_attention = True
|
||
model = StableLmForCausalLM(config=config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
|
||
# first forward pass
|
||
outputs = model(
|
||
input_ids,
|
||
attention_mask=input_mask,
|
||
encoder_hidden_states=encoder_hidden_states,
|
||
encoder_attention_mask=encoder_attention_mask,
|
||
use_cache=True,
|
||
)
|
||
past_key_values = outputs.past_key_values
|
||
|
||
# create hypothetical multiple next token and extent to next_input_ids
|
||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||
|
||
# append to next input_ids and
|
||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||
|
||
output_from_no_past = model(
|
||
next_input_ids,
|
||
attention_mask=next_attention_mask,
|
||
encoder_hidden_states=encoder_hidden_states,
|
||
encoder_attention_mask=encoder_attention_mask,
|
||
output_hidden_states=True,
|
||
)["hidden_states"][0]
|
||
output_from_past = model(
|
||
next_tokens,
|
||
attention_mask=next_attention_mask,
|
||
encoder_hidden_states=encoder_hidden_states,
|
||
encoder_attention_mask=encoder_attention_mask,
|
||
past_key_values=past_key_values,
|
||
output_hidden_states=True,
|
||
)["hidden_states"][0]
|
||
|
||
# select random slice
|
||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||
|
||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||
|
||
# test that outputs are equal for slice
|
||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||
|
||
def prepare_config_and_inputs_for_common(self):
|
||
config_and_inputs = self.prepare_config_and_inputs()
|
||
(
|
||
config,
|
||
input_ids,
|
||
token_type_ids,
|
||
input_mask,
|
||
sequence_labels,
|
||
token_labels,
|
||
choice_labels,
|
||
) = config_and_inputs
|
||
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
|
||
return config, inputs_dict
|
||
|
||
|
||
@require_torch
|
||
# Copied from transformers.tests.persimmon.test_modeling_persimmon.PersimmonModelTest with Persimmon -> StableLm
|
||
class StableLmModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
||
all_model_classes = (
|
||
(StableLmModel, StableLmForCausalLM, StableLmForSequenceClassification) if is_torch_available() else ()
|
||
)
|
||
pipeline_model_mapping = (
|
||
{
|
||
"feature-extraction": StableLmModel,
|
||
"text-classification": StableLmForSequenceClassification,
|
||
# TODO (ydshieh): check why these two fail. Fix them or skip them in a better way.
|
||
# "text-generation": StableLmForCausalLM,
|
||
# "zero-shot": StableLmForSequenceClassification,
|
||
}
|
||
if is_torch_available()
|
||
else {}
|
||
)
|
||
|
||
all_generative_model_classes = (StableLmForCausalLM,) if is_torch_available() else ()
|
||
test_headmasking = False
|
||
test_pruning = False
|
||
|
||
def setUp(self):
|
||
self.model_tester = StableLmModelTester(self)
|
||
self.config_tester = ConfigTester(self, config_class=StableLmConfig, hidden_size=37)
|
||
|
||
def test_config(self):
|
||
self.config_tester.run_common_tests()
|
||
|
||
def test_model(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_model(*config_and_inputs)
|
||
|
||
def test_stablelm_sequence_classification_model(self):
|
||
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||
config.num_labels = 3
|
||
input_ids = input_dict["input_ids"]
|
||
attention_mask = input_ids.ne(1).to(torch_device)
|
||
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
|
||
model = StableLmForSequenceClassification(config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
|
||
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
|
||
|
||
def test_stablelm_sequence_classification_model_for_single_label(self):
|
||
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||
config.num_labels = 3
|
||
config.problem_type = "single_label_classification"
|
||
input_ids = input_dict["input_ids"]
|
||
attention_mask = input_ids.ne(1).to(torch_device)
|
||
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
|
||
model = StableLmForSequenceClassification(config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
|
||
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
|
||
|
||
def test_stablelm_sequence_classification_model_for_multi_label(self):
|
||
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||
config.num_labels = 3
|
||
config.problem_type = "multi_label_classification"
|
||
input_ids = input_dict["input_ids"]
|
||
attention_mask = input_ids.ne(1).to(torch_device)
|
||
sequence_labels = ids_tensor(
|
||
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
|
||
).to(torch.float)
|
||
model = StableLmForSequenceClassification(config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
|
||
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
|
||
|
||
@parameterized.expand([("linear",), ("dynamic",)])
|
||
def test_model_rope_scaling(self, scaling_type):
|
||
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
||
short_input = ids_tensor([1, 10], config.vocab_size)
|
||
long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size)
|
||
|
||
set_seed(42) # Fixed seed at init time so the two models get the same random weights
|
||
original_model = StableLmModel(config)
|
||
original_model.to(torch_device)
|
||
original_model.eval()
|
||
original_short_output = original_model(short_input).last_hidden_state
|
||
original_long_output = original_model(long_input).last_hidden_state
|
||
|
||
set_seed(42) # Fixed seed at init time so the two models get the same random weights
|
||
config.rope_scaling = {"type": scaling_type, "factor": 10.0}
|
||
scaled_model = StableLmModel(config)
|
||
scaled_model.to(torch_device)
|
||
scaled_model.eval()
|
||
scaled_short_output = scaled_model(short_input).last_hidden_state
|
||
scaled_long_output = scaled_model(long_input).last_hidden_state
|
||
|
||
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
|
||
# maximum sequence length, so the outputs for the short input should match.
|
||
if scaling_type == "dynamic":
|
||
self.assertTrue(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
|
||
else:
|
||
self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
|
||
|
||
# The output should be different for long inputs
|
||
self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5))
|
||
|
||
|
||
@require_torch
|
||
class StableLmModelIntegrationTest(unittest.TestCase):
|
||
@slow
|
||
def test_model_stablelm_3b_4e1t_logits(self):
|
||
input_ids = {"input_ids": torch.tensor([[510, 8588, 310, 1900, 9386]], dtype=torch.long, device=torch_device)}
|
||
|
||
model = StableLmForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t").to(torch_device)
|
||
model.eval()
|
||
|
||
output = model(**input_ids).logits
|
||
|
||
# Expected mean on dim = -1
|
||
EXPECTED_MEAN = torch.tensor([[2.7146, 2.4245, 1.5616, 1.4424, 2.6790]]).to(torch_device)
|
||
self.assertTrue(torch.allclose(output.mean(dim=-1), EXPECTED_MEAN, atol=1e-4, rtol=1e-4))
|
||
|
||
# Expected logits sliced from [0, 0, 0:30]
|
||
EXPECTED_SLICE = torch.tensor([7.1030, -1.4195, 9.9206, 7.7008, 4.9891, 4.2169, 5.5426, 3.7878, 6.7593, 5.7360, 8.4691, 5.5448, 5.0544, 10.4129, 8.5573, 13.0405, 7.3265, 3.5868, 6.1106, 5.9406, 5.6376, 5.7490, 5.4850, 4.8124, 5.1991, 4.6419, 4.5719, 9.9588, 6.7222, 4.5070]).to(torch_device) # fmt: skip
|
||
self.assertTrue(torch.allclose(output[0, 0, :30], EXPECTED_SLICE, atol=1e-4, rtol=1e-4))
|
||
|
||
@slow
|
||
def test_model_stablelm_3b_4e1t_generation(self):
|
||
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t")
|
||
model = StableLmForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t")
|
||
input_ids = tokenizer.encode(
|
||
"My favorite food has always been pizza, but lately",
|
||
return_tensors="pt",
|
||
)
|
||
|
||
outputs = model.generate(input_ids, max_new_tokens=20, temperature=0)
|
||
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||
|
||
EXPECTED_TEXT_COMPLETION = """My favorite food has always been pizza, but lately I’ve been craving something different. I’ve been trying to eat healthier and I’ve"""
|
||
self.assertEqual(text, EXPECTED_TEXT_COMPLETION)
|
||
|
||
@require_bitsandbytes
|
||
@slow
|
||
@require_flash_attn
|
||
def test_model_3b_long_prompt(self):
|
||
EXPECTED_OUTPUT_TOKEN_IDS = [3, 3, 3]
|
||
input_ids = [306, 338] * 2047
|
||
model = StableLmForCausalLM.from_pretrained(
|
||
"stabilityai/stablelm-3b-4e1t",
|
||
device_map="auto",
|
||
torch_dtype="auto",
|
||
load_in_4bit=True,
|
||
attn_implementation="flash_attention_2",
|
||
)
|
||
input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
|
||
generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0)
|
||
self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-3:].tolist())
|
||
|
||
# Copied from transformers.tests.models.llama.test_modeling_llama.LlamaModelTest.test_eager_matches_sdpa_generate with Llama->StableLm,saibo/llama-1B->stabilityai/stablelm-3b-4e1t
|
||
@require_torch_sdpa
|
||
@slow
|
||
def test_eager_matches_sdpa_generate(self):
|
||
"""
|
||
Overwritting the common test as the test is flaky on tiny models
|
||
"""
|
||
max_new_tokens = 30
|
||
|
||
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t")
|
||
|
||
model_sdpa = StableLmForCausalLM.from_pretrained(
|
||
"stabilityai/stablelm-3b-4e1t",
|
||
torch_dtype=torch.float16,
|
||
low_cpu_mem_usage=True,
|
||
).to(torch_device)
|
||
|
||
self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")
|
||
|
||
model_eager = StableLmForCausalLM.from_pretrained(
|
||
"stabilityai/stablelm-3b-4e1t",
|
||
torch_dtype=torch.float16,
|
||
low_cpu_mem_usage=True,
|
||
attn_implementation="eager",
|
||
).to(torch_device)
|
||
|
||
self.assertTrue(model_eager.config._attn_implementation == "eager")
|
||
|
||
for name, submodule in model_eager.named_modules():
|
||
if "SdpaAttention" in submodule.__class__.__name__:
|
||
raise ValueError("The eager model should not have SDPA attention layers")
|
||
|
||
has_sdpa = False
|
||
for name, submodule in model_sdpa.named_modules():
|
||
if "SdpaAttention" in submodule.__class__.__name__:
|
||
has_sdpa = True
|
||
break
|
||
if not has_sdpa:
|
||
raise ValueError("The SDPA model should have SDPA attention layers")
|
||
|
||
texts = [
|
||
"hi here's a longer context, getting longer and",
|
||
"Hello this is a very long sentence my friend, very long for real",
|
||
"Today I am in Paris and",
|
||
]
|
||
|
||
for padding_side in ["left", "right"]:
|
||
tokenizer.padding_side = padding_side
|
||
tokenizer.pad_token = tokenizer.eos_token
|
||
|
||
inputs = tokenizer(texts, return_tensors="pt", padding=True).to(torch_device)
|
||
|
||
res_eager = model_eager.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False)
|
||
res_sdpa = model_sdpa.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False)
|
||
|
||
with self.subTest(f"{padding_side}"):
|
||
torch.testing.assert_close(
|
||
res_eager,
|
||
res_sdpa,
|
||
msg=f"\n{tokenizer.batch_decode(res_eager)} \nvs\n{tokenizer.batch_decode(res_sdpa)}",
|
||
)
|