617 lines
24 KiB
Python
617 lines
24 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
from __future__ import annotations
|
|
|
|
import unittest
|
|
|
|
from transformers import ElectraConfig, is_tf_available
|
|
from transformers.testing_utils import require_tf, slow
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_tf_available():
|
|
import tensorflow as tf
|
|
|
|
from transformers.models.electra.modeling_tf_electra import (
|
|
TFElectraForMaskedLM,
|
|
TFElectraForMultipleChoice,
|
|
TFElectraForPreTraining,
|
|
TFElectraForQuestionAnswering,
|
|
TFElectraForSequenceClassification,
|
|
TFElectraForTokenClassification,
|
|
TFElectraModel,
|
|
)
|
|
|
|
|
|
class TFElectraModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = 13
|
|
self.seq_length = 7
|
|
self.is_training = True
|
|
self.use_input_mask = True
|
|
self.use_token_type_ids = True
|
|
self.use_labels = True
|
|
self.vocab_size = 99
|
|
self.hidden_size = 32
|
|
self.num_hidden_layers = 2
|
|
self.num_attention_heads = 4
|
|
self.intermediate_size = 37
|
|
self.hidden_act = "gelu"
|
|
self.hidden_dropout_prob = 0.1
|
|
self.attention_probs_dropout_prob = 0.1
|
|
self.max_position_embeddings = 512
|
|
self.type_vocab_size = 16
|
|
self.type_sequence_label_size = 2
|
|
self.initializer_range = 0.02
|
|
self.num_labels = 3
|
|
self.num_choices = 4
|
|
self.scope = None
|
|
self.embedding_size = 128
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = ElectraConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
|
|
def prepare_config_and_inputs_for_decoder(self):
|
|
(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = self.prepare_config_and_inputs()
|
|
|
|
config.is_decoder = True
|
|
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
|
|
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
|
|
|
|
return (
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
)
|
|
|
|
def create_and_check_model(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = TFElectraModel(config=config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
|
|
result = model(inputs)
|
|
|
|
inputs = [input_ids, input_mask]
|
|
result = model(inputs)
|
|
|
|
result = model(input_ids)
|
|
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def create_and_check_causal_lm_base_model(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.is_decoder = True
|
|
|
|
model = TFElectraModel(config=config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
|
|
result = model(inputs)
|
|
|
|
inputs = [input_ids, input_mask]
|
|
result = model(inputs)
|
|
|
|
result = model(input_ids)
|
|
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def create_and_check_model_as_decoder(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
):
|
|
config.add_cross_attention = True
|
|
|
|
model = TFElectraModel(config=config)
|
|
inputs = {
|
|
"input_ids": input_ids,
|
|
"attention_mask": input_mask,
|
|
"token_type_ids": token_type_ids,
|
|
"encoder_hidden_states": encoder_hidden_states,
|
|
"encoder_attention_mask": encoder_attention_mask,
|
|
}
|
|
result = model(inputs)
|
|
|
|
inputs = [input_ids, input_mask]
|
|
result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states)
|
|
|
|
# Also check the case where encoder outputs are not passed
|
|
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
|
|
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def create_and_check_causal_lm_base_model_past(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
):
|
|
config.is_decoder = True
|
|
|
|
model = TFElectraModel(config=config)
|
|
|
|
# first forward pass
|
|
outputs = model(input_ids, use_cache=True)
|
|
outputs_use_cache_conf = model(input_ids)
|
|
outputs_no_past = model(input_ids, use_cache=False)
|
|
|
|
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
|
|
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
|
|
|
|
past_key_values = outputs.past_key_values
|
|
|
|
# create hypothetical next token and extent to next_input_ids
|
|
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
|
|
|
|
# append to next input_ids and attn_mask
|
|
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
|
|
|
|
output_from_no_past = model(next_input_ids, output_hidden_states=True).hidden_states[0]
|
|
output_from_past = model(
|
|
next_tokens, past_key_values=past_key_values, output_hidden_states=True
|
|
).hidden_states[0]
|
|
|
|
# select random slice
|
|
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
|
|
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
|
|
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
|
|
|
|
# test that outputs are equal for slice
|
|
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)
|
|
|
|
def create_and_check_causal_lm_base_model_past_with_attn_mask(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
):
|
|
config.is_decoder = True
|
|
|
|
model = TFElectraModel(config=config)
|
|
|
|
# create attention mask
|
|
half_seq_length = self.seq_length // 2
|
|
attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
|
|
attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
|
|
attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)
|
|
|
|
# first forward pass
|
|
outputs = model(input_ids, attention_mask=attn_mask, use_cache=True)
|
|
|
|
# create hypothetical next token and extent to next_input_ids
|
|
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
|
|
|
|
past_key_values = outputs.past_key_values
|
|
|
|
# change a random masked slice from input_ids
|
|
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
|
|
random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
|
|
vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
|
|
condition = tf.transpose(
|
|
tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
|
|
)
|
|
input_ids = tf.where(condition, random_other_next_tokens, input_ids)
|
|
|
|
# append to next input_ids and
|
|
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
|
|
attn_mask = tf.concat(
|
|
[attn_mask, tf.ones((attn_mask.shape[0], 1), dtype=tf.int32)],
|
|
axis=1,
|
|
)
|
|
|
|
output_from_no_past = model(
|
|
next_input_ids,
|
|
attention_mask=attn_mask,
|
|
output_hidden_states=True,
|
|
).hidden_states[0]
|
|
output_from_past = model(
|
|
next_tokens, past_key_values=past_key_values, attention_mask=attn_mask, output_hidden_states=True
|
|
).hidden_states[0]
|
|
|
|
# select random slice
|
|
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
|
|
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
|
|
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
|
|
|
|
# test that outputs are equal for slice
|
|
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)
|
|
|
|
def create_and_check_causal_lm_base_model_past_large_inputs(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
):
|
|
config.is_decoder = True
|
|
|
|
model = TFElectraModel(config=config)
|
|
|
|
input_ids = input_ids[:1, :]
|
|
input_mask = input_mask[:1, :]
|
|
self.batch_size = 1
|
|
|
|
# first forward pass
|
|
outputs = model(input_ids, attention_mask=input_mask, use_cache=True)
|
|
past_key_values = outputs.past_key_values
|
|
|
|
# create hypothetical next token and extent to next_input_ids
|
|
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
|
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
|
|
|
|
# append to next input_ids and
|
|
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
|
|
next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)
|
|
|
|
output_from_no_past = model(
|
|
next_input_ids,
|
|
attention_mask=next_attention_mask,
|
|
output_hidden_states=True,
|
|
).hidden_states[0]
|
|
output_from_past = model(
|
|
next_tokens,
|
|
attention_mask=next_attention_mask,
|
|
past_key_values=past_key_values,
|
|
output_hidden_states=True,
|
|
).hidden_states[0]
|
|
|
|
self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])
|
|
|
|
# select random slice
|
|
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
|
|
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
|
|
output_from_past_slice = output_from_past[:, :, random_slice_idx]
|
|
|
|
# test that outputs are equal for slice
|
|
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
|
|
|
|
def create_and_check_decoder_model_past_large_inputs(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
):
|
|
config.add_cross_attention = True
|
|
|
|
model = TFElectraModel(config=config)
|
|
|
|
input_ids = input_ids[:1, :]
|
|
input_mask = input_mask[:1, :]
|
|
encoder_hidden_states = encoder_hidden_states[:1, :, :]
|
|
encoder_attention_mask = encoder_attention_mask[:1, :]
|
|
self.batch_size = 1
|
|
|
|
# first forward pass
|
|
outputs = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
use_cache=True,
|
|
)
|
|
past_key_values = outputs.past_key_values
|
|
|
|
# create hypothetical next token and extent to next_input_ids
|
|
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
|
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
|
|
|
|
# append to next input_ids and
|
|
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
|
|
next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)
|
|
|
|
output_from_no_past = model(
|
|
next_input_ids,
|
|
attention_mask=next_attention_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
output_hidden_states=True,
|
|
).hidden_states[0]
|
|
output_from_past = model(
|
|
next_tokens,
|
|
attention_mask=next_attention_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
past_key_values=past_key_values,
|
|
output_hidden_states=True,
|
|
).hidden_states[0]
|
|
|
|
self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])
|
|
|
|
# select random slice
|
|
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
|
|
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
|
|
output_from_past_slice = output_from_past[:, :, random_slice_idx]
|
|
|
|
# test that outputs are equal for slice
|
|
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
|
|
|
|
def create_and_check_for_masked_lm(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = TFElectraForMaskedLM(config=config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
|
|
result = model(inputs)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
|
|
def create_and_check_for_pretraining(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = TFElectraForPreTraining(config=config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
|
|
result = model(inputs)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
|
|
|
|
def create_and_check_for_sequence_classification(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = TFElectraForSequenceClassification(config=config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
|
|
result = model(inputs)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
|
|
|
|
def create_and_check_for_multiple_choice(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_choices = self.num_choices
|
|
model = TFElectraForMultipleChoice(config=config)
|
|
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
|
|
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
|
|
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
|
|
inputs = {
|
|
"input_ids": multiple_choice_inputs_ids,
|
|
"attention_mask": multiple_choice_input_mask,
|
|
"token_type_ids": multiple_choice_token_type_ids,
|
|
}
|
|
result = model(inputs)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
|
|
|
|
def create_and_check_for_question_answering(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = TFElectraForQuestionAnswering(config=config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
|
|
result = model(inputs)
|
|
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
|
|
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
|
|
|
|
def create_and_check_for_token_classification(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = TFElectraForTokenClassification(config=config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
|
|
result = model(inputs)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_tf
|
|
class TFElectraModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(
|
|
TFElectraModel,
|
|
TFElectraForMaskedLM,
|
|
TFElectraForPreTraining,
|
|
TFElectraForTokenClassification,
|
|
TFElectraForMultipleChoice,
|
|
TFElectraForSequenceClassification,
|
|
TFElectraForQuestionAnswering,
|
|
)
|
|
if is_tf_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": TFElectraModel,
|
|
"fill-mask": TFElectraForMaskedLM,
|
|
"question-answering": TFElectraForQuestionAnswering,
|
|
"text-classification": TFElectraForSequenceClassification,
|
|
"token-classification": TFElectraForTokenClassification,
|
|
"zero-shot": TFElectraForSequenceClassification,
|
|
}
|
|
if is_tf_available()
|
|
else {}
|
|
)
|
|
test_head_masking = False
|
|
test_onnx = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = TFElectraModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=ElectraConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
"""Test the base model"""
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_causal_lm_base_model(self):
|
|
"""Test the base model of the causal LM model
|
|
|
|
is_deocder=True, no cross_attention, no encoder outputs
|
|
"""
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_causal_lm_base_model(*config_and_inputs)
|
|
|
|
def test_model_as_decoder(self):
|
|
"""Test the base model as a decoder (of an encoder-decoder architecture)
|
|
|
|
is_deocder=True + cross_attention + pass encoder outputs
|
|
"""
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
|
|
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
|
|
|
|
def test_causal_lm_base_model_past(self):
|
|
"""Test causal LM base model with `past_key_values`"""
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_causal_lm_base_model_past(*config_and_inputs)
|
|
|
|
def test_causal_lm_base_model_past_with_attn_mask(self):
|
|
"""Test the causal LM base model with `past_key_values` and `attention_mask`"""
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_causal_lm_base_model_past_with_attn_mask(*config_and_inputs)
|
|
|
|
def test_causal_lm_base_model_past_with_large_inputs(self):
|
|
"""Test the causal LM base model with `past_key_values` and a longer decoder sequence length"""
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_causal_lm_base_model_past_large_inputs(*config_and_inputs)
|
|
|
|
def test_decoder_model_past_with_large_inputs(self):
|
|
"""Similar to `test_causal_lm_base_model_past_with_large_inputs` but with cross-attention"""
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
|
|
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
|
|
|
|
def test_for_masked_lm(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
|
|
|
|
def test_for_pretraining(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
|
|
|
|
def test_for_question_answering(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
|
|
|
|
def test_for_sequence_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
|
|
|
|
def test_for_multiple_choice(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
|
|
|
|
def test_for_token_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
# for model_name in TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
|
for model_name in ["google/electra-small-discriminator"]:
|
|
model = TFElectraModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
@require_tf
|
|
class TFElectraModelIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_inference_masked_lm(self):
|
|
model = TFElectraForPreTraining.from_pretrained("lysandre/tiny-electra-random")
|
|
input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
|
|
output = model(input_ids)[0]
|
|
|
|
expected_shape = [1, 6]
|
|
self.assertEqual(output.shape, expected_shape)
|
|
|
|
print(output[:, :3])
|
|
|
|
expected_slice = tf.constant([[-0.24651965, 0.8835437, 1.823782]])
|
|
tf.debugging.assert_near(output[:, :3], expected_slice, atol=1e-4)
|