262 lines
10 KiB
Python
262 lines
10 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
from __future__ import annotations
|
|
|
|
import unittest
|
|
|
|
from transformers import DistilBertConfig, is_tf_available
|
|
from transformers.testing_utils import require_tf, slow
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_tf_available():
|
|
import tensorflow as tf
|
|
|
|
from transformers.models.distilbert.modeling_tf_distilbert import (
|
|
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFDistilBertForMaskedLM,
|
|
TFDistilBertForMultipleChoice,
|
|
TFDistilBertForQuestionAnswering,
|
|
TFDistilBertForSequenceClassification,
|
|
TFDistilBertForTokenClassification,
|
|
TFDistilBertModel,
|
|
)
|
|
|
|
|
|
class TFDistilBertModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = 13
|
|
self.seq_length = 7
|
|
self.is_training = True
|
|
self.use_input_mask = True
|
|
self.use_token_type_ids = False
|
|
self.use_labels = True
|
|
self.vocab_size = 99
|
|
self.hidden_size = 32
|
|
self.num_hidden_layers = 2
|
|
self.num_attention_heads = 4
|
|
self.intermediate_size = 37
|
|
self.hidden_act = "gelu"
|
|
self.hidden_dropout_prob = 0.1
|
|
self.attention_probs_dropout_prob = 0.1
|
|
self.max_position_embeddings = 512
|
|
self.type_vocab_size = 16
|
|
self.type_sequence_label_size = 2
|
|
self.initializer_range = 0.02
|
|
self.num_labels = 3
|
|
self.num_choices = 4
|
|
self.scope = None
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = DistilBertConfig(
|
|
vocab_size=self.vocab_size,
|
|
dim=self.hidden_size,
|
|
n_layers=self.num_hidden_layers,
|
|
n_heads=self.num_attention_heads,
|
|
hidden_dim=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
dropout=self.hidden_dropout_prob,
|
|
attention_dropout=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
|
|
def create_and_check_distilbert_model(
|
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = TFDistilBertModel(config=config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask}
|
|
|
|
result = model(inputs)
|
|
|
|
inputs = [input_ids, input_mask]
|
|
|
|
result = model(inputs)
|
|
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def create_and_check_distilbert_for_masked_lm(
|
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = TFDistilBertForMaskedLM(config=config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask}
|
|
result = model(inputs)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
|
|
def create_and_check_distilbert_for_question_answering(
|
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = TFDistilBertForQuestionAnswering(config=config)
|
|
inputs = {
|
|
"input_ids": input_ids,
|
|
"attention_mask": input_mask,
|
|
}
|
|
result = model(inputs)
|
|
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
|
|
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
|
|
|
|
def create_and_check_distilbert_for_sequence_classification(
|
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = TFDistilBertForSequenceClassification(config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask}
|
|
result = model(inputs)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
|
|
|
|
def create_and_check_distilbert_for_multiple_choice(
|
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_choices = self.num_choices
|
|
model = TFDistilBertForMultipleChoice(config)
|
|
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
|
|
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
|
|
inputs = {
|
|
"input_ids": multiple_choice_inputs_ids,
|
|
"attention_mask": multiple_choice_input_mask,
|
|
}
|
|
result = model(inputs)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
|
|
|
|
def create_and_check_distilbert_for_token_classification(
|
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = TFDistilBertForTokenClassification(config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask}
|
|
result = model(inputs)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_tf
|
|
class TFDistilBertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(
|
|
TFDistilBertModel,
|
|
TFDistilBertForMaskedLM,
|
|
TFDistilBertForQuestionAnswering,
|
|
TFDistilBertForSequenceClassification,
|
|
TFDistilBertForTokenClassification,
|
|
TFDistilBertForMultipleChoice,
|
|
)
|
|
if is_tf_available()
|
|
else None
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": TFDistilBertModel,
|
|
"fill-mask": TFDistilBertForMaskedLM,
|
|
"question-answering": TFDistilBertForQuestionAnswering,
|
|
"text-classification": TFDistilBertForSequenceClassification,
|
|
"token-classification": TFDistilBertForTokenClassification,
|
|
"zero-shot": TFDistilBertForSequenceClassification,
|
|
}
|
|
if is_tf_available()
|
|
else {}
|
|
)
|
|
test_head_masking = False
|
|
test_onnx = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = TFDistilBertModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=DistilBertConfig, dim=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_distilbert_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_distilbert_model(*config_and_inputs)
|
|
|
|
def test_for_masked_lm(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_distilbert_for_masked_lm(*config_and_inputs)
|
|
|
|
def test_for_question_answering(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_distilbert_for_question_answering(*config_and_inputs)
|
|
|
|
def test_for_sequence_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_distilbert_for_sequence_classification(*config_and_inputs)
|
|
|
|
def test_for_multiple_choice(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_distilbert_for_multiple_choice(*config_and_inputs)
|
|
|
|
def test_for_token_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_distilbert_for_token_classification(*config_and_inputs)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]):
|
|
model = TFDistilBertModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
@require_tf
|
|
class TFDistilBertModelIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_inference_masked_lm(self):
|
|
model = TFDistilBertModel.from_pretrained("distilbert-base-uncased")
|
|
input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
|
|
output = model(input_ids)[0]
|
|
|
|
expected_shape = [1, 6, 768]
|
|
self.assertEqual(output.shape, expected_shape)
|
|
|
|
expected_slice = tf.constant(
|
|
[
|
|
[
|
|
[0.19261885, -0.13732955, 0.4119799],
|
|
[0.22150156, -0.07422661, 0.39037204],
|
|
[0.22756018, -0.0896414, 0.3701467],
|
|
]
|
|
]
|
|
)
|
|
tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)
|